深入理解 YOLOv8:解析.yaml 配置文件目标检测、实例分割、图像分类、姿态检测

目录

yolov8导航

YOLOv8(附带各种任务详细说明链接)

引言

YOLOv8配置文件概览

yolov8.yaml

1. nc

2. scales

3. backbone

4. head

yolov8-seg.yaml 

1. 参数部分

2. 骨架(Backbone)部分

3. 头部(Head)部分

关键区别

yolov8-cls.yaml 

1. 参数部分

2. 骨架(Backbone)部分

3. 头部(Head)部分

关键区别

yolov8-pose.yaml 

1. 参数部分

2. 骨架(Backbone)部分

3. 头部(Head)部分

关键区别

总结


yolov8导航

        如果大家想要了解关于yolov8的其他任务和相关内容可以点击这个链接,我这边整理了许多其他任务的说明博文,后续也会持续更新,包括yolov8模型优化、sam等等的相关内容。

YOLOv8(附带各种任务详细说明链接)

引言

        近年来,YOLO(You Only Look Once)系列在目标检测领域取得了巨大成功。YOLOv8,作为该系列的最新成员,以其卓越的性能和灵活的配置受到广泛关注。今天,我们将深入探讨YOLOv8的配置文件(.yaml),这对于理解模型的内部工作机制至关重要。

YOLOv8配置文件概览

        YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨架(backbone)和头部(head)结构。这些配置决定了模型的性能和复杂性。

yolov8.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8目标检测模型,具有P3-P5输出。使用示例请参见 https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # 类别数目scales: # 模型复合缩放常数,例如 'model=yolov8n.yaml' 将调用带有 'n' 缩放的 yolov8.yaml# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n概览:225层, 3157200参数, 3157184梯度, 8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s概览:225层, 11166560参数, 11166544梯度, 28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m概览:295层, 25902640参数, 25902624梯度, 79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l概览:365层, 43691520参数, 43691504梯度, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x概览:365层, 68229648参数, 68229632梯度, 258.5 GFLOPs# YOLOv8.0n骨架
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n头部
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # 合并骨架P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # 合并骨架P3- [-1, 3, C2f, [256]]  # 15 (P3/8-小)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # 合并头部P4- [-1, 3, C2f, [512]]  # 18 (P4/16-中)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # 合并头部P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-大)- [[15, 18, 21], 1, Detect, [nc]]  # 检测(P3, P4, P5)

         在这个配置文件中,定义了多个不同尺寸的YOLOv8模型,每个模型具有不同的深度、宽度和通道数,以适应不同的计算能力和性能需求。骨架部分(backbone)定义了模型的基本结构,包括卷积层、自定义C2f模块和空间金字塔池化层。头部(head)则包括上采样、连接和检测层,负责将提取的特征用于最终的目标检测。

        在yolov8.yaml配置文件中,每个关键词都扮演着特定的角色,下面是对这些关键词及其含义的详细解释:

1. nc

  • 含义nc代表"number of classes",即模型用于检测的对象类别总数。
  • 示例中的值80,表示该模型配置用于检测80种不同的对象。

2. scales

  • 含义scales用于定义模型的不同尺寸和复杂度,它包含一系列缩放参数。
  • 子参数
    • n, s, m, l, x表示不同的模型尺寸,每个尺寸都有对应的depth(深度)、width(宽度)和max_channels(最大通道数)。

3. backbone

  • 含义backbone部分定义了模型的基础架构,即用于特征提取的网络结构。
  • 关键组成
    • [from, repeats, module, args]表示层的来源、重复次数、模块类型和参数。
    • Conv表示卷积层,其参数指定了输出通道数、卷积核大小和步长。
    • C2f可能是一个特定于YOLOv8的自定义模块。
    • SPPF是空间金字塔池化层,用于在多个尺度上聚合特征。

4. head

  • 含义head部分定义了模型的检测头,即用于最终目标检测的网络结构。
  • 关键组成
    • nn.Upsample表示上采样层,用于放大特征图。
    • Concat表示连接层,用于合并来自不同层的特征。
    • C2f层再次出现,可能用于进一步处理合并后的特征。
    • Detect层是最终的检测层,负责输出检测结果。

        这部分,我这边会详细的叙述每一个关键词和节点的含义,以这个为标准,后续我这边概述其他.yaml的时候,我会更侧重描述他们跟这个的区别。 

yolov8-seg.yaml 

        在详细说明yolov8-seg.yaml配置文件之前,让我们先了解一下它是用于什么的。这个配置文件专门为YOLOv8-seg模型设计,这是一个用于实例分割的模型。实例分割是计算机视觉中的一项高级任务,不仅需要识别图像中的对象(如目标检测),还要为每个对象的每个像素提供精确的分类。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)

1. 参数部分

  • nc: 80:表示模型用于检测的类别数目为80,与目标检测模型相同。
  • scales:定义模型的不同尺寸和复杂度,与目标检测模型相似,提供不同的缩放级别(n, s, m, l, x)。

2. 骨架(Backbone)部分

  • 这部分与yolov8.yaml非常相似,定义了模型的基础架构,包括多个卷积层(Conv)和自定义C2f层,用于特征提取。

3. 头部(Head)部分

  • 在头部结构中,出现了上采样(nn.Upsample)、连接(Concat)和C2f层,这与目标检测模型相似,用于处理和合并不同层次的特征。
  • 最重要的区别在于最后的层:在实例分割模型中,使用的是Segment层而不是Detect层。
    • Segment层的参数为[nc, 32, 256],其中nc代表类别数,其余两个参数可能是特定于实例分割任务的配置,如用于分割的特定通道数和内部特征数量。

关键区别

  • 任务类型yolov8-seg.yaml针对的是实例分割任务,而yolov8.yaml用于目标检测任务。实例分割不仅需要识别对象,还要为每个对象提供像素级的精确分类。
  • 最后一层yolov8-seg.yaml中使用的是Segment层,专门用于实例分割,而yolov8.yaml使用的是Detect层,用于目标检测。

        yolov8-seg.yaml配置文件是YOLOv8-seg实例分割模型的核心,它在基本结构上与标准的YOLOv8目标检测模型相似,但在最后的层面上进行了调整,以适应实例分割的特殊需求。这种灵活性和调整能力展示了YOLOv8模型家族的多功能性和适应不同计算机视觉任务的能力。 

yolov8-cls.yaml 

        yolov8-cls.yaml配置文件专为YOLOv8-cls模型设计,这是一个面向图像分类任务的模型。与目标检测(YOLOv8)和实例分割(YOLOv8-seg)不同,图像分类的目的是为整个图像指定一个类别标签,而不是在图像中定位或分割特定对象。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify# Parameters
nc: 1000  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.00, 1.25, 1024]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]# YOLOv8.0n head
head:- [-1, 1, Classify, [nc]]  # Classify

1. 参数部分

  • nc: 1000:表示模型用于分类的类别总数为1000。这比通常的目标检测或实例分割任务有更多的类别。
  • scales:与yolov8-seg.yaml类似,定义了模型的不同尺寸和复杂度,通过提供不同的缩放级别(n, s, m, l, x)来适应不同的计算能力和资源。

2. 骨架(Backbone)部分

  • 这部分与yolov8-seg.yaml的骨架结构相似,包含多个卷积层(Conv)和自定义C2f层,用于提取图像特征。这表明无论是用于分类、检测还是分割,特征提取的基本原理是类似的。

3. 头部(Head)部分

  • 这是与yolov8-seg.yaml最显著的不同之处。在图像分类模型中,头部结构相对简单,只包含一个Classify层。
    • Classify层的参数[nc]指定了类别的数量,这一层负责将提取的特征映射到类别标签上。

关键区别

  • 任务类型yolov8-cls.yaml是为图像分类任务设计的,而非目标检测或实例分割。这意味着模型的输出是整个图像的类别标签,而不是图像中各个对象的位置或分割掩码。
  • 头部结构:与处理更复杂的任务(如实例分割)相比,图像分类模型的头部结构更加简单,只包含一个Classify层,直接对整个图像进行分类。

         yolov8-cls.yaml配置文件针对的是图像分类任务,它在结构上与目标检测和实例分割模型有共通之处,尤其是在特征提取的骨架部分。然而,头部结构的简化体现了图像分类任务的直接性和专注性。这种配置展示了YOLOv8模型家族的多功能性和在不同计算机视觉任务中的应用能力。

yolov8-pose.yaml 

    yolov8-pose.yaml 配置文件是专为 YOLOv8-pose 模型设计的,这是一个用于关键点/姿态估计的模型。关键点估计是计算机视觉中的一项高级任务,它涉及识别和定位图像中人体或其他对象的特定关键点。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose# Parameters
nc: 1  # number of classes
kpt_shape: [17, 3]  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Pose, [nc, kpt_shape]]  # Pose(P3, P4, P5)

1. 参数部分

  • nc: 1:表示模型用于检测的类别数目为1。在关键点估计任务中,通常关注的是单一类别(如人体)。
  • kpt_shape: [17, 3]:定义了关键点的数量和维度。在此例中,有17个关键点,每个关键点有3个维度(x, y坐标和可见性)。
  • scales:定义了模型的不同尺寸和复杂度,这与其他YOLOv8配置相似,提供不同的缩放级别(n, s, m, l, x)。

2. 骨架(Backbone)部分

  • 这部分与其他YOLOv8配置文件相似,包含多个卷积层(Conv)和自定义C2f层,用于提取图像特征。

3. 头部(Head)部分

  • 头部结构与其他YOLOv8模型相似,包含上采样(nn.Upsample)、连接(Concat)和C2f层,用于处理和合并不同层次的特征。
  • 关键的不同之处在于最后的层:Pose层。这是专为关键点估计设计的层,其参数包括类别数(nc)和关键点形状(kpt_shape)。

关键区别

  • 任务类型yolov8-pose.yaml配置文件是为关键点/姿态估计任务设计的,与用于图像分类、目标检测或实例分割的模型有明显不同。关键点估计需要识别和定位图像中的特定点。
  • 头部结构:最大的区别在于Pose层的使用,这是专门为关键点估计任务设计的,用于定位每个关键点的位置和可见性。

         yolov8-pose.yaml配置文件体现了YOLOv8模型在处理不同类型计算机视觉任务时的灵活性。它在基础结构上与其他YOLOv8模型相似,但通过特定于任务的头部结构调整,适应了关键点估计这一复杂的任务。这种配置展示了YOLOv8模型家族的多功能性,以及在不同计算机视觉任务中的应用能力。

总结

        YOLOv8系列模型展示了其在多个计算机视觉任务中的适应性和高效性。通过其多样化的配置文件,YOLOv8不仅在目标检测领域表现出色,还成功扩展到实例分割、图像分类和关键点/姿态估计等领域。每个配置文件针对特定任务优化,从而确保模型在处理不同类型的视觉数据时保持高准确率和效率。这种灵活性和多功能性使得YOLOv8成为当前最先进的视觉识别系统之一,为未来的技术创新和应用提供了广阔的可能性。如果有哪里写的不够清晰,小伙伴本可以给评论或者留言,我这边会尽快的优化博文内容,另外如有需要,我这边可支持技术答疑与支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/583258.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《MySQL》事务篇

事务特性 ACID Atomicity原子性:事务中的操作要么全部完成,要么全部失败。 Consistency一致性:事务操作前后,数据满足完整性约束。 Isolation隔离性:允许并发执行事务,每个事务都有自己的数据空间&…

项目 引入 uView

安装 npm install uview-ui //或 yarn add uview-ui main.js引入 import Vue from vue; import uView from uview-ui;Vue.use(uView);//或// main.js import uView from /node_modules/uview-ui Vue.use(uView) uni.scss引入 import /node_modules/uview-ui/theme.scss…

2024年PMP考试新考纲-PMBOK第七版-【裁剪】真题解析

距离2024年3月份PMP考试的脚步越来越近了,如何快速、有效的备考3月份PMP考试呢?华研荟结合多年的PMP培训和辅导经验,前面的文章为大家提出了三个建议,只要按照这三个步骤走,现在从零开始也是完全有可能3A取得PMP证书的…

数据库是否可以直接作为数据仓库的数据源

在数据仓库使用数据时,我们是否可以直接将数据库作为数据源?如果使用了,会存在哪些问题? 数据库中存储的是业务数据,存储方式是行式存储;而数据仓库中数据是以列式存储的;如果数据仓库要想使用…

Android画布Canvas矩阵Matrix放大裁剪Rect区域的Bitmap,Kotlin

Android画布Canvas矩阵Matrix放大裁剪Rect区域的Bitmap,Kotlin private fun mydraw() {val originBmp BitmapFactory.decodeResource(resources, R.mipmap.pic).copy(Bitmap.Config.ARGB_8888, true)val newBmp Bitmap.createBitmap(originBmp.width, originBmp.h…

AI大模型

目录 前言 AGI通用人工智能 总结 前言 AI零基础直播公开课,了解一下。 AGI通用人工智能 query chatmind.tech 找一下这篇论文,了解一下 E为编码器,D为解码器 所谓大模型也就是编码器-解码器。 模型里会有一些公式和参数,厉害的…

go 源码解读 sync.RWMutex

sync.RWMutex 简介源码结构RLockRUnlockUnlockgo 运行时方法 简介 简述sync包中读写锁的源码。 (go -version 1.21) 读写锁(RWMutex)是一种并发控制机制,用于在多个 goroutine 之间对共享资源进行读写操作。它提供了…

浅谈WPF之控件模板Control Template和数据模板Data Template

WPF不仅支持传统的Windows Forms编程的用户界面和用户体验设计,同时还推出了以模板为核心的新一代设计理念。在WPF中,通过引入模板,将数据和算法的“内容”和“形式”进行解耦。模板主要分为两大类:数据模板【Data Template】和控…

C语言——数据类型

一、基本类型: 它们是构建其他数据类型的基础。 1、整型 用于表示整数。例如,int a 10; 整形中又有许多类型: 类型大小范围int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或…

【zookeeper分布式锁】

文章目录 1.Zookeeper 分布式锁实战 1.Zookeeper 分布式锁实战 1.1 什么是分布式锁 在单体的应用开发场景中涉及并发同步的时候,大家往往采用Synchronized(同步)或者其他同一个 JVM内Lock机制来解决多线程间的同步问题。在分布式集群工作的开…

《MySQL系列-InnoDB引擎01》MySQL体系结构和存储引擎

文章目录 第一章 MySQL体系结构和存储引擎1 数据库和实例2 MySQL配置文件3 MySQL数据库路径4 MySQL体系结构5 MySQL存储引擎5.1 InnoDB存储引擎5.2 MyISAM存储引擎5.3 NDB存储引擎5.4 Memory存储引擎5.5 Archive存储引擎5.6 Federated存储引擎 6 连接MySQL6.1 TCP/IP6.2 命名管…

关于“Python”的核心知识点整理大全48

目录 world_population.py 16.2.5 制作世界地图 americas.py 16.2.6 在世界地图上呈现数字数据 na_populations.py 16.2.7 绘制完整的世界人口地图 world_population.py 16.2.8 根据人口数量将国家分组 world_population.py 16.2.9 使用 Pygal 设置世界地图的样式 w…

ubuntu快速搭建java开发环境/java1.8/idea2021.1.3/mysql/doceker

当设置Java开发环境时,确保先安装Java Development Kit (JDK) 8、IntelliJ IDEA 2021.1.3专业版、Maven、Git、MySQL和Docker。以下是Ubuntu上安装这些工具的基本步骤: 1. 安装Java Development Kit (JDK) 8: 首先,更新APT软件包…

Presentation Error:编程中的细节之战

Presentation Error:编程中的细节之战 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,让我们一起探讨在程序设计和编程中常见的问题之一…

PECL 到 LVPECL 的接口使用交流耦合或 3 电阻端接。采用交流耦合作热拔插时需注意防止因电容积累电荷放电导致器件损伤

交流耦合的必要性 PECL和LVPECL信号是差分信号,设计成具有一定的直流偏置电压。这种直流偏置电压在不同的设备或电路板之间可能会有所不同,直接连接可能导致直流偏置电平的冲突,从而损坏器件或影响信号完整性。交流耦合通过串联电容来隔离直流成分,只允许交流信号通过,从而…

web安全,常见的攻击以及如何防御

1、CSRF攻击 CSRF即Cross-site request forgery(跨站请求伪造) &#xff08;1&#xff09;为了防止这种攻击&#xff0c;表单一般都带有一个随机 token&#xff0c;告诉服务器这是真实请求。 <form action"your-bank.com/transfer" method"POST">&…

docker小白第九天

docker小白第九天 安装redis集群 cluster(集群)模式-docker版本&#xff0c;哈希槽分区进行亿级数据存储。如果1~2亿条数据需要缓存&#xff0c;请问如何设计这个存储案例。单机存储是不可能的&#xff0c;需要分布式存储&#xff0c;如果使用redis又该如何部署。 哈希取余分…

5-Docker实例-centos-nginx(3)

基于上次制作的centos-systemctl:1.0镜像,在其上安装nginx rpm,并构建nginx镜像。 1.制作nginx Dockerfile,并保存 命令: vim Dockerfile FROM centos-systemctl:1.0 MAINTAINER ztjCOPY nginx.repo /etc/yum.repos.d/ COPY epel.repo /etc/yum.repos.d/ COPY epel-tes…

数据结构——红黑树 and B-树

红黑树 根据平衡条件第4、5两点 最短路径&#xff0c;都是黑色 最长路径&#xff0c;红黑相间 最长是最短的两倍 B-树

Linux jed命令教程:如何有效地使用jed编辑器(附实例教程和注意事项)

Linux jed命令介绍 jed是一个可定制的文本编辑器&#xff0c;它在各种平台上都有应用&#xff0c;包括Linux、Windows、macOS等&#xff0c;但主要用于类Unix系统。jed特别适合用来编辑程序原始代码。 Linux jed命令适用的Linux版本 在Linux上&#xff0c;你的发行版的软件仓…