助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv6开发构建生活场景下城市部件检测识别系统

井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难以完全避免的问题,相信随着城市化的发展完善相应的问题会得到妥善解决。本文的核心目的并不是要来深度分析此类问题形成的深度原因等,而是考虑如何从技术的角度来助力此类问题的解决,这里我们的核心思想是想要基于实况的数据集来开发构建自动化的检测识别模型,对于摄像头所能覆盖的视角内存在的对应设施部件进行关注计算,后期,在业务应用层面可以考虑设定合理的规则和预警逻辑,结合AI的自动检测识别能力来对可能出现的损坏、倒塌、折断等问题进行及时的预警,通知到相关的工程技术人员来进行维护处理,在源头端尽可能地降低可能的损害,感觉这是一个不错的技术与实际生活场景相结合的落地点。

在前文中我们已经进行了相关的项目开发实践,感兴趣的话可以自行移步阅读:

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于DETR(DEtection TRansformer)开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv3开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv4开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv5全系列模型【n/s/m/l/x】开发构建生活场景下城市部件检测识别系统》

本文主要是选择YOLOv6来开发实现检测模型,首先看下实例效果:

Yolov6是美团开发的轻量级检测算法,截至目前为止该算法已经迭代到了4.0版本,每一个版本都包含了当时最优秀的检测技巧和最最先进的技术,YOLOv6的Backbone不再使用Cspdarknet,而是转为比Rep更高效的EfficientRep;它的Neck也是基于Rep和PAN搭建了Rep-PAN;而Head则和YOLOX一样,进行了解耦,并且加入了更为高效的结构。YOLOv6也是沿用anchor-free的方式,抛弃了以前基于anchor的方法。除了模型的结构之外,它的数据增强和YOLOv5的保持一致;而标签分配上则是和YOLOX一样,采用了simOTA;并且引入了新的边框回归损失:SIOU。
YOLOv5和YOLOX都是采用多分支的残差结构CSPNet,但是这种结构对于硬件来说并不是很友好。所以为了更加适应GPU设备,在backbone上就引入了ReVGG的结构,并且基于硬件又进行了改良,提出了效率更高的EfficientRep。RepVGG为每一个3×3的卷积添加平行了一个1x1的卷积分支和恒等映射的分支。这种结构就构成了构成一个RepVGG Block。和ResNet不同的是,RepVGG是每一层都添加这种结构,而ResNet是每隔两层或者三层才添加。RepVGG介绍称,通过融合而成的3x3卷积结构,对计算密集型的硬件设备很友好。

简单看下实例数据情况:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False# Classes
nc: 4  # number of classes# class names
names: ['biaoshi', 'diangan', 'guangjiaoxiang', 'renjing']

默认我先选择的是yolov6n系列的模型,基于finetune来进行模型的开发:

# YOLOv6s model
model = dict(type='YOLOv6n',pretrained='weights/yolov6n.pt',depth_multiple=0.33,width_multiple=0.25,backbone=dict(type='EfficientRep',num_repeats=[1, 6, 12, 18, 6],out_channels=[64, 128, 256, 512, 1024],fuse_P2=True,cspsppf=True,),neck=dict(type='RepBiFPANNeck',num_repeats=[12, 12, 12, 12],out_channels=[256, 128, 128, 256, 256, 512],),head=dict(type='EffiDeHead',in_channels=[128, 256, 512],num_layers=3,begin_indices=24,anchors=3,anchors_init=[[10,13, 19,19, 33,23],[30,61, 59,59, 59,119],[116,90, 185,185, 373,326]],out_indices=[17, 20, 23],strides=[8, 16, 32],atss_warmup_epoch=0,iou_type='siou',use_dfl=False, # set to True if you want to further train with distillationreg_max=0, # set to 16 if you want to further train with distillationdistill_weight={'class': 1.0,'dfl': 1.0,},)
)solver = dict(optim='SGD',lr_scheduler='Cosine',lr0=0.0032,lrf=0.12,momentum=0.843,weight_decay=0.00036,warmup_epochs=2.0,warmup_momentum=0.5,warmup_bias_lr=0.05
)data_aug = dict(hsv_h=0.0138,hsv_s=0.664,hsv_v=0.464,degrees=0.373,translate=0.245,scale=0.898,shear=0.602,flipud=0.00856,fliplr=0.5,mosaic=1.0,mixup=0.243,
)

终端执行:

python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2

即可启动训练,当然了如果想要训练其他系列的模型也可以,参照命令如下:

#yolov6n
python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2#yolov6s
python3 tools/train.py --batch-size 16 --conf configs/yolov6s_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6s --epochs 100 --workers 2#yolov6m
python3 tools/train.py --batch-size 16 --conf configs/yolov6m_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6m --epochs 100 --workers 2#yolov6l
python3 tools/train.py --batch-size 8 --conf configs/yolov6l_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6l --epochs 100 --workers 2

日志输出如下所示:

训练完成输出如下:

Inferencing model in train datasets.: 100%|█████| 13/13 [00:07<00:00,  1.70it/s]Evaluating speed.Evaluating mAP by pycocotools.
Saving runs/train/yolov6n/predictions.json...
Results saved to runs/train/yolov6n
Epoch: 98 | mAP@0.5: 0.9564649861258367 | mAP@0.50:0.95: 0.6238790353332472Epoch        lr  iou_loss  dfl_loss  cls_loss
loading annotations into memory...
Done (t=0.11s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.04s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.10s).
Accumulating evaluation results...
DONE (t=0.23s).Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.624Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.956Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.658Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.800Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.221Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.639Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.599Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.707Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.716Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.800Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.728

离线推理实例如下:

在实际应用开发的时候可以考虑如何更好地基于目标检测模型的检测计算结果来产生业务上的有效事件,这里大都是需要结合业务需求来设定合理有效的规则和预警逻辑的,这里暂时不是本文的重点,感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/583217.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue - Class和Style绑定详解

1. 模板部分 <template><div><!-- Class 绑定示例 --><div :class"{ active: isActive, text-danger: hasError }">Hello, Vue!</div><!-- Class 绑定数组示例 --><div :class"[activeClass, errorClass]">Cla…

10. Opencv检测并截取图中二维码

1. 说明 在二维码扫描功能开发中,使用相机扫描图片时,往往图片中的信息比较多样,可能会造成二维码检测失败的问题。一种提高检测精度的方式就是把二维码在图片中单独抠出来,去除其它冗余信息,然后再去识别这张提取出来的二维码。本篇博客记录采用的一种实现二维码位置检测…

编程笔记 GOLANG基础 003 Go语言开发环境搭建

编程笔记 GOLANG基础 003 Go语言开发环境搭建 一、安装VSCODE二、安装GO语言主程序 Golang的学习从开发环境搭建开始。本例记录的是WINDOWS平台下使用VSCODE做为开发工具的搭建过程。网上查到的资料都是以前版本的方法&#xff0c;新版Golang发生了一些变化。各位参数环境搭建时…

Unity Shader UVLightReveal (紫外线显示,验钞效果)

Unity Shader UVLightReveal &#xff08;紫外线显示&#xff0c;验钞效果&#xff09; UVLight Reveal 实现验钞机的效果实现方案操作实现1.Light2.将另一个图形加入3.加上图形效果4.加上灯光的颜色自定义判定 源码 UVLight Reveal 实现验钞机的效果 大家应该都有见过验钞机验…

Aseprite编译

官方网站 : https://www.aseprite.org/ Aseprite编译 步骤 : 1> App Store 下载安装 XCode 2> 安装 brew # /bin/bash -c "$(curl -fsSL https://gitee.com/ineo6/homebrew-install/raw/master/install.sh)" 或 # /bin/zsh -c "$(curl -fsSL https://g…

GoogleNetv1:Going deeper with convolutions更深的卷积神经网络

文章目录 GoogleNetv1全文翻译论文结构摘要1 引言2 相关工作3 动机和高层考虑稀疏矩阵 4 结构细节引入1x1卷积核可以减少通道数 5 GoogleNet6 训练方法7 ILSVRC 2014 分类挑战赛设置和结果8 ILSVRC 2014检测挑战赛设置和结果9 总结 论文研究背景、成果及意义论文图表 GoogleNet…

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第六节 理解垃圾回收GC,提搞程序性能

深入浅出图解C#堆与栈 C# Heaping VS Stacking 第六节 理解垃圾回收GC&#xff0c;提搞程序性能 [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)[深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节 栈基…

YOLOv5改进 | 2023Neck篇 | CCFM轻量级跨尺度特征融合模块(RT-DETR结构改进v5)

一、本文介绍 本文给大家带来的改进机制是轻量级跨尺度特征融合模块CCFM&#xff08;Cross-Scale Feature Fusion Module&#xff09;其主要原理是&#xff1a;将不同尺度的特征通过融合操作整合起来&#xff0c;以增强模型对于尺度变化的适应性和对小尺度对象的检测能力。我将…

OpenHarmony南向之Audio

音频架构 Audio驱动框架基于HDF驱动框架实现&#xff0c;包含内核态&#xff08;KHDF&#xff09;&#xff0c;和用户态&#xff08;UHDF&#xff09;&#xff0c; 对北向提供音频HDI接口 音频框架图 驱动架构主要由以下几部分组成。 HDI adapter&#xff1a;实现Audio HAL层…

Spring 是如何解决循环依赖问题的方案

文章目录 Spring 是如何解决循环依赖问题的&#xff1f; Spring 是如何解决循环依赖问题的&#xff1f; 我们都知道&#xff0c;如果在代码中&#xff0c;将两个或多个 Bean 互相之间持有对方的引用就会发生循环依赖。循环的依赖将会导致注入死循环。这是 Spring 发生循环依赖…

数据库开发之图形化工具以及表操作的详细解析

2.3 图形化工具 2.3.1 介绍 前面我们讲解了DDL中关于数据库操作的SQL语句&#xff0c;在我们编写这些SQL时&#xff0c;都是在命令行当中完成的。大家在练习的时候应该也感受到了&#xff0c;在命令行当中来敲这些SQL语句很不方便&#xff0c;主要的原因有以下 3 点&#xff…

Android Studio 进行NDK开发,实现JNI,以及编写C++与Java交互(Java调用本地函数)并编译出本地so动态库

1.首先认识一下NDK。 &#xff08;1&#xff09;什么是NDK&#xff1f; NDK全称是Native Development Kit&#xff0c;NDK提供了一系列的工具&#xff0c;帮助开发者快速开发C/C的动态库&#xff0c;并能自动将so和java应用一起打包成apk。NDK集成了交叉编译器&#xff08;交叉…

Android 13 动态启用或禁用IPV6

介绍 客户想要通过APK来控制IPV6的启用和禁用&#xff0c;这里我们通过广播的方式来让客户控制IPV6。 效果展示 adb shell ifconfig 这里我们用debug软件&#xff0c;将下面节点置为1 如图ipv6已被禁用了 echo 1 > /proc/sys/net/ipv6/conf/all/disable_ipv6 修改 接下来…

算法学习系列(十五):最小堆、堆排序

目录 引言一、最小堆概念二、堆排序模板&#xff08;最小堆&#xff09;三、模拟堆 引言 这个堆排序的话&#xff0c;考的还挺多的&#xff0c;主要是构建最小堆&#xff0c;并且在很多情况下某些东西还用得着它来优化&#xff0c;比如说迪杰斯特拉算法可以用最小堆优化&#…

Spring Boot学习随笔- Jasypt加密数据库用户名和密码以及解密

学习视频&#xff1a;【编程不良人】2021年SpringBoot最新最全教程 第十九章、Jasypt加密 Jasypt全称是Java Simplified Encryption&#xff0c;是一个开源项目。 Jasypt与Spring Boot集成&#xff0c;以便在应用程序的属性文件中加密敏感信息&#xff0c;然后在应用程序运行…

Openslide安装

文章目录 安装open-slide python下载openslide二进制文件解压到Anaconda的library目录下配置环境变量在py文件中添加以下语句即可 官网链接 安装open-slide python 表面上这样就可以导入了但事实上会遇到 Couldn’t locate OpendSlide DLL的问题&#xff0c;openslide必须独立安…

VSCODE : SSH远程配置+免密登录

SSH基础配置 填入地址&#xff0c;回车 ssh userhost-or-ip 然后选择默认的配置&#xff0c;回车&#xff0c;得到以下结果&#xff1a; 点击链接 选择远程的系统 输入密码 免密登录 生成SSH密钥&#xff1a; 首先&#xff0c;确保你已经在本地生成了SSH密钥。你可以使…

nodejs+vue+微信小程序+python+PHP的艺术展览馆艺术品管理系统-计算机毕业设计推荐

选择轻量级的关系型MySQL数据库存储数据。接着进行系统的需求分析、功能设计、数据库设计&#xff0c;最后进行编码实现。具体如下&#xff1a; 1&#xff09;网站首页&#xff1a;艺术品浏览展示&#xff0c;艺术品作者线下。供会员浏览查看。 2&#xff09;注册登录&#xff…

OpenCV-Python(21):OPenCV查找及绘制轮廓

1.认识轮廓 1.1 目标 理解什么是轮廓学习掌握找轮廓、绘制轮廓等学习使用cv2.findContours()、cv2.drawContours()函数的用法 1.2 什么是轮廓 在OpenCV中&#xff0c;轮廓是图像中连续的边界线的曲线&#xff0c;具有相同的颜色或者灰度&#xff0c;用于表示物体的形状。轮廓…

vue中使用echarts实现省市地图绘制,根据数据显示省市天气图标及温度信息

一、实现效果 使用echarts实现省市地图绘制根据数据显示省下市的天气图标根据数据显示省下市的温度信息 二、实现方法 1、安装echarts插件 npm install echarts --save2、获取省市json数据 https://datav.aliyun.com/portal/school/atlas/area_selector 通过 阿里旗下的高…