给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释:该算式转化为常见的中缀算术表达式为:((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
思路:
在上一篇文章中1047删除字符串中的所有相邻重复项提到了 递归就是用栈来实现的。
所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后序遍历的方式把二叉树序列化了,就可以了。
在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和的对对碰游戏是不是就非常像了。
如动画所示:
相信看完动画大家应该知道,这和1047. 删除字符串中的所有相邻重复项 (opens new window)是差不错的,只不过本题不要相邻元素做消除了,而是做运算!
C++代码如下:
class Solution {
public:int string_int(string s){if (s[0] >= '0' && s[0] <= '9'){int num = 0;for (int i = 0; i < s.size(); i++){num = num * 10 + (s[i] - '0');}return num;}else {int num = 0;for (int i = 1; i < s.size(); i++){num = num * 10 + (s[i] - '0');}return -num;} }int evalRPN(vector<string>& tokens) {stack<int>sta;for (int i = 0; i < tokens.size(); i++){if (tokens[i] == "+"|| tokens[i] == "-"|| tokens[i] == "*"|| tokens[i] == "/"){int second = sta.top();sta.pop();int first = sta.top();sta.pop();if (tokens[i] == "+"){sta.push(first + second);}else if (tokens[i] == "-"){sta.push(first - second);}else if (tokens[i] == "*"){sta.push(first * second);}else if (tokens[i] == "/"){ sta.push(first / second);}}else {sta.push(string_int(tokens[i]));} }return sta.top();}
};