基于动态窗口的航线规划

MATLAB2016b可以运行

% -------------------------------------------------------------------------
% File : DWA 算法
% Discription : Mobile Robot Motion Planning with Dynamic Window Approach
% Author :Yuncheng Jiang
% License : Modified BSD Software License Agreement
% 出处:https://b23.tv/rGKUTW - b站up主【WHEELTEC】
% 源代码已经配备丰富的注释,我在其基础上添加了一些个人理解。
%               —— 2021/10/30  Poaoz 
% -------------------------------------------------------------------------% 流程梳理 - dwa动态窗口算法
%   1)设置初始化参数:起点、终点、障碍物、小车的速度加速度限制等
%   2)根据小车当前状态及参数,计算出小车接下来一小段时间可达到的状态(主要为速度、加速度范围)
%   3)根据上述计算而得的速度、加速度,模拟出小车接下来一小段时间可达到的路径
%   4) 借助评价函数,对上述路径进行评估,并选取出最优解,然后使小车执行(执行对应的速度、角速度)
%   5)再以小车新的位置及状态为基础,重复上述“2-5”,直到判断出小车到达终点。%  闲谈:前面学习了RRT、A*、人工势能法,综合来看,这几种方法的套路是类似的。
%  相比较,DWA更加灵活,无需栅格化地图并且更贴合小车运动实际。% 该函数相当于dwa算法的main函数,内容包括 参数设定、流程的梳理、绘图 。
function [] = dwa_V_1_0()
close all;
clear ;
disp('Dynamic Window Approach sample program start!!')
%% 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
% x=[0 0 pi/2 0 0]'; % 5x1矩阵 列矩阵  位置 0,0 航向 pi/2 ,速度、角速度均为0
x = [0 0 pi/10 0 0]'; 
% 下标宏定义 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
POSE_X      = 1;  %坐标 X
POSE_Y      = 2;  %坐标 Y
YAW_ANGLE   = 3;  %机器人航向角
V_SPD       = 4;  %机器人速度
W_ANGLE_SPD = 5;  %机器人角速度 
goal = [10,10];   % 目标点位置 [x(m),y(m)]
% 障碍物位置列表 [x(m) y(m)]
obstacle=[%0 2;3 10*rand(1);
%           4 4;
%          5 4;
%            5 5;6 10*rand(1);
%          5 9
%          7 88 10*rand(1);2 5;      4 2;7 7;9 9];
%边界障碍物,防止跑出图外for i =-1for j = -1:12obstacle = [obstacle; [i,j]];endend     
for i =12for j = -1:12obstacle = [obstacle; [i,j]];end
end 
for j =-2for i = -1:12obstacle = [obstacle; [i,j]];end
end 
for j=13for i= -1:12obstacle = [obstacle; [i,j]];end
end obstacleR = 0.5;% 冲突判定用的障碍物半径
global dt; 
dt = 0.1;% 时间[s]   每一条计算得到的路径,由多个点组成  dt即为每个点之间的时间间隔
% evalParam[4]/dt+1 = 每条路径的构成点数目   这两个参数更改后,dwa算法的具体效果也将有所变化% 机器人运动学模型参数
% 最高速度m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss],
% 速度分辨率[m/s],转速分辨率[rad/s]]
Kinematic = [1.0,toRadian(20.0),0.2,toRadian(50.0),0.01,toRadian(1)];    % 调用函数里面的 model
%定义Kinematic的下标含义              % Kinematic 在路径计算相关函数中,大量用到
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
MD_V_RESOLUTION  = 5;%  速度分辨率[m/s]
MD_W_RESOLUTION  = 6;%  转速分辨率[rad/s]]% 评价函数参数 [heading,dist,velocity,predictDT]
% 航向得分的比重、距离得分的比重、速度得分的比重、向前模拟轨迹的时间
evalParam = [0.045, 0.1 ,0.1, 3.0];
% evalParam = [2, 0.2 ,0.2, 3.0];
area      = [-3 14 -3 14];% 模拟区域范围 [xmin xmax ymin ymax]% 模拟实验的结果
result.x=[];   %累积存储走过的轨迹点的状态值
tic; % 估算程序运行时间开始
flag_obstacle = [1-2*rand(1) 1-2*rand(1) 1-2*rand(1)];
vel_obstacle = 0.05;
temp = 0;
abc = 0;
%movcount=0;%% Main loop   循环运行 5000次 指导达到目的地 或者 5000次运行结束
for i = 1:5000  % DWA参数输入 返回控制量 u = [v(m/s),w(rad/s)] 和 轨迹  ~ 即机器人将采用的控制参数[u,traj] = DynamicWindowApproach(x,Kinematic,goal,evalParam,obstacle,obstacleR); % 算出下发速度u/当前速度ux = f(x,u); % 机器人移动到下一个时刻的状态量 根据当前速度和角速度推导 下一刻的位置和角度abc = abc+1;% 历史轨迹的保存result.x = [result.x; x'];  %最新结果 以行的形式 添加到result.x,保存的是所有状态参数值,包括坐标xy、朝向、线速度、角速度,其实应该是只取坐标就OK% 是否到达目的地if norm(x(POSE_X:POSE_Y)-goal')<0.25   % norm函数来求得坐标上的两个点之间的距离disp('==========Arrive Goal!!==========');break;end%====Animation====hold off;               % 关闭图形保持功能。 新图出现时,取消原图的显示。ArrowLength = 0.5;      % 箭头长度% 机器人 ~ 绘图操作 % quiver(x,y,u,v) 在 x 和 y 中每个对应元素对组所指定的坐标处将向量绘制为箭头quiver(x(POSE_X), x(POSE_Y), ArrowLength*cos(x(YAW_ANGLE)), ArrowLength*sin(x(YAW_ANGLE)),'ok'); % 绘制机器人当前位置的航向箭头hold on;                                                     %启动图形保持功能,当前坐标轴和图形都将保持,从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围plot(result.x(:,POSE_X),result.x(:,POSE_Y),'-b');hold on;    % 绘制走过的所有位置 所有历史数据的 X、Y坐标plot(goal(1),goal(2),'*r');hold on;                          % 绘制目标位置for j = 1:3if obstacle(j,2) > 10 && flag_obstacle(j) > 0 || obstacle(j,2) < 0 && flag_obstacle(j) < 0flag_obstacle(j) = -flag_obstacle(j);end
%        obstacle(j,2)=obstacle(j,2)+flag_obstacle(j)*vel_obstacle;end%plot(obstacle(:,1),obstacle(:,2),'*k');hold on;              % 绘制所有障碍物位置DrawObstacle_plot(obstacle,obstacleR);% 探索轨迹 画出待评价的轨迹if ~isempty(traj) %轨迹非空for it=1:length(traj(:,1))/5    %计算所有轨迹数  traj 每5行数据 表示一条轨迹点ind = 1+(it-1)*5; %第 it 条轨迹对应在traj中的下标 plot(traj(ind,:),traj(ind+1,:),'-g');hold on;  %根据一条轨迹的点串画出轨迹   traj(ind,:) 表示第ind条轨迹的所有x坐标值  traj(ind+1,:)表示第ind条轨迹的所有y坐标值endendaxis(area); %根据area设置当前图形的坐标范围,分别为x轴的最小、最大值,y轴的最小最大值grid on;drawnow limitrate;  %刷新屏幕. 当代码执行时间长,需要反复执行plot时,Matlab程序不会马上把图像画到figure上,这时,要想实时看到图像的每一步变化情况,需要使用这个语句。for j = 1:3if norm(obstacle(j,:)-x(1:2)')-obstacleR < 0disp('==========Hit an obstacle!!==========');temp = 1;break;endendif temp == 1break;end% movcount = movcount+1;% mov(movcount) = getframe(gcf);%  记录动画帧
end
toc;  %输出程序运行时间  形式:时间已过 ** 秒。
disp(abc)
%movie2avi(mov,'movie.avi');  %录制过程动画 保存为 movie.avi 文件%% 绘制所有障碍物位置   ok
% 输入参数:obstacle 所有障碍物的坐标   obstacleR 障碍物的半径
function [] = DrawObstacle_plot(obstacle,obstacleR)
r = obstacleR; 
theta = 0:pi/20:2*pi;
for id=1:length(obstacle(:,1))x = r * cos(theta) + obstacle(id,1); y = r  *sin(theta) + obstacle(id,2);plot(x,y,'-m'); 
end%plot(obstacle(:,1),obstacle(:,2),'*m');hold on;              % 绘制所有障碍物位置%% DWA算法实现     ok
% model  机器人运动学模型  最高速度[m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss], 速度分辨率[m/s],转速分辨率[rad/s]]
% 输入参数:当前状态、模型参数、目标点、评价函数的参数、障碍物位置、障碍物半径
% 返回参数:控制量 u = [v(m/s),w(rad/s)] 和 轨迹集合 N * 31  (N:可用的轨迹数)
% 选取最优参数的物理意义:在局部导航过程中,使得机器人避开障碍物,朝着目标以较快的速度行驶。
function [u,trajDB] = DynamicWindowApproach(x,model,goal,evalParam,ob,R)
% Dynamic Window [vmin,vmax,wmin,wmax] 最小速度 最大速度 最小角速度 最大角速度速度
Vr = CalcDynamicWindow(x,model);  % 1)根据当前状态 和 运动模型 计算当前的参数允许范围
% 评价函数的计算 evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%               trajDB      每5行一条轨迹 每条轨迹都有状态x点串组成
[evalDB,trajDB]= Evaluation(x,Vr,goal,ob,R,model,evalParam);  % 2)evalParam 评价函数参数 [heading,dist,velocity,predictDT]
if isempty(evalDB)disp('no path to goal!!');u=[0;0];return;
end
% 各评价函数正则化
evalDB = NormalizeEval(evalDB);
% 3)最终评价函数的计算 - 从诸多可以选择的轨迹中,选择一个“最优”的路径
feval=[];
for id=1:length(evalDB(:,1))  % 遍历各个可运行的路径,分别计算其评价得分feval = [feval;evalParam(1:3)*evalDB(id,3:5)']; %根据评价函数参数 前三个参数分配的权重 计算每一组可用的路径参数信息的得分
end
evalDB = [evalDB feval]; % 最后一组;加最后一列,每一组速度的最终得分[maxv,ind] = max(feval);% 4)选取评分最高的参数 对应分数返回给 maxv  对应下标返回给 ind
u = evalDB(ind,1:2)';% 返回最优参数的速度、角速度  %% 评价函数 内部负责产生可用轨迹   ok
% 输入参数 :当前状态、参数允许范围(窗口)、目标点、障碍物位置、障碍物半径、评价函数的参数
%  Vr保存着机器人当前状态可达到的 最小最大的速度与角速度   model保存着机器人的一些性能参数,如该函数中使用的 速度和角速度的分辨率
% 返回参数: (返回一堆可以行进的轨迹~这些轨迹还需进行评价函数的筛选,从而得到最终的前进路径)
%           evalDB N*5  每行一组可用参数 分别为 速度、角速度、航向得分、距离得分、速度得分
%           trajDB      每5行一条轨迹 每条轨迹包含 前向预测时间/dt + 1 = 31 个轨迹点(见生成轨迹函数)
function [evalDB,trajDB] = Evaluation(x,Vr,goal,ob,R,model,evalParam)
evalDB = [];
trajDB = [];
for vt = Vr(1):model(5):Vr(2)       %根据速度分辨率遍历所有可用速度: 最小速度和最大速度 之间 速度分辨率 递增 for ot=Vr(3):model(6):Vr(4)     %根据角度分辨率遍历所有可用角速度: 最小角速度和最大角速度 之间 角度分辨率 递增  % 轨迹推测; 得到 xt: 机器人向前运动后的预测位姿; traj: 当前时刻 到 预测时刻之间的轨迹(由轨迹点组成)[xt,traj] = GenerateTrajectory(x,vt,ot,evalParam(4));  %evalParam(4),前向模拟时间;% 各评价函数的计算heading = CalcHeadingEval(xt,goal); % 前项预测终点的航向得分  偏差越小分数越高[dist,Flag] = CalcDistEval(xt,ob,R);    % 前项预测终点 距离最近障碍物的间隙得分 距离越远分数越高vel     = abs(vt);                  % 速度得分 速度越快分越高stopDist = CalcBreakingDist(vel,model); % 制动距离的计算if dist > stopDist && Flag == 0 % 如果可能撞到最近的障碍物 则舍弃此路径 (到最近障碍物的距离 大于 刹车距离 才取用)evalDB = [evalDB;[vt ot heading dist vel]];   % flag 是否会碰到障碍物的标志trajDB = [trajDB;traj];   % 每5行 一条轨迹  endend
end%% 归一化处理     ok
% 每一条轨迹的单项得分除以本项所有分数和
function EvalDB=NormalizeEval(EvalDB)
% 评价函数正则化
if sum(EvalDB(:,3))~= 0  % 航向得分EvalDB(:,3) = EvalDB(:,3)/sum(EvalDB(:,3));  %矩阵的数除  单列矩阵的每元素分别除以本列所有数据的和
end
if sum(EvalDB(:,4))~= 0  % 距离得分EvalDB(:,4) = EvalDB(:,4)/sum(EvalDB(:,4));
end
if sum(EvalDB(:,5))~= 0  % 速度得分EvalDB(:,5) = EvalDB(:,5)/sum(EvalDB(:,5));
end%% 单条轨迹生成、轨迹推演函数.  ok
% 输入参数: 当前状态、vt当前速度、ot角速度、evaldt 前向模拟时间、机器人模型参数(没用到)
% 返回参数;   返回 预测的x和到达该x所经过的若干点 (将后者依次连线,就可得到一条预测的轨迹)
%           x   : 机器人模拟时间内向前运动 预测的终点位姿(状态); 
%           traj: 当前时刻 到 预测时刻之间 过程中的位姿记录(状态记录) 当前模拟的轨迹  
%                  轨迹点的个数为 evaldt / dt + 1 = 3.0 / 0.1 + 1 = 31         
function [x,traj] = GenerateTrajectory(x,vt,ot,evaldt)
global dt;
time = 0;
u = [vt;ot];% 输入值
traj = x;   % 机器人轨迹
while time <= evaldt   time = time+dt; % 时间更新x = f(x,u);     % 运动更新 前项模拟时间内 速度、角速度恒定traj = [traj x]; % 每一列代表一个轨迹点 一列一列的添加
end%% 计算制动距离   ok
%根据运动学模型计算制动距离, 也可以考虑成走一段段圆弧的累积 简化可以当一段段小直线的累积
% 利用 当前速度和机器人可达到的加速度,计算其速度减到0所走距离  
function stopDist = CalcBreakingDist(vel,model)
global dt;
MD_ACC   = 3;% 加速度
stopDist=0;
while vel>0   %给定加速度的条件下 速度减到0所走的距离stopDist = stopDist + vel*dt;% 制动距离的计算 vel = vel - model(MD_ACC)*dt;% 
end%% 障碍物距离评价函数    ok
%(机器人在当前轨迹上与最近的障碍物之间的距离,如果没有障碍物则设定一个常数)
% 输入参数:位姿、所有障碍物位置、障碍物半径
% 输出参数:当前预测的轨迹终点的位姿距离所有障碍物中最近的障碍物的距离 如果大于设定的最大值则等于最大值
% 距离障碍物距离越近分数越低
function [dist,Flag] = CalcDistEval(x,ob,R)
dist=100;    % 无障碍物的默认值
for io = 1:length(ob(:,1))  disttmp = norm(ob(io,:)-x(1:2)')-R; % 位置x到某个障碍物中心的距离 - 障碍物半径  !!!有可能出现负值吗if disttmp <0   % 该位置会碰到障碍物Flag = 1;break;else            % 碰不到障碍物Flag = 0;endif dist > disttmp   % 大于最小值 则选择最小值dist = disttmp;end
end% 障碍物距离评价限定一个最大值,如果不设定,一旦一条轨迹没有障碍物,将太占比重
if dist >= 3*R %最大分数限制dist = 3*R;
end%% heading的评价函数计算   ok
% 输入参数:当前位置、目标位置
% 输出参数:航向参数得分 = 180 - 偏差值
% 当前车的航向和相对于目标点的航向 偏离程度越小 分数越高 最大180分
function heading = CalcHeadingEval(x,goal)
theta = toDegree(x(3));% 机器人朝向
goalTheta = toDegree(atan2(goal(2)-x(2),goal(1)-x(1)));% 目标点相对于机器人本身的方位 
% 下面的 targetTheta 也就是 小车当前航向与目标点的差值 (正数)
if goalTheta > thetatargetTheta = goalTheta-theta;% [deg]
elsetargetTheta = theta-goalTheta;% [deg]
endheading = 180 - targetTheta;  %% 计算动态窗口        model - 速度加速度等基本参数。  ok
% 返回 最小速度 最大速度 最小角速度 最大角速度速度
function Vr = CalcDynamicWindow(x,model)
V_SPD       = 4;%机器人速度
W_ANGLE_SPD = 5;%机器人角速度 
MD_MAX_V    = 1;%   最高速度m/s]
MD_MAX_W    = 2;%   最高旋转速度[rad/s]
MD_ACC      = 3;%   加速度[m/ss]
MD_VW       = 4;%   旋转加速度[rad/ss]
global dt;
% 车子速度的最大最小范围 依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vs=[0 model(MD_MAX_V) -model(MD_MAX_W) model(MD_MAX_W)];% 根据当前速度以及加速度限制计算的动态窗口  依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vd = [x(V_SPD)-model(MD_ACC)*dt x(V_SPD)+model(MD_ACC)*dt ...x(W_ANGLE_SPD)-model(MD_VW)*dt x(W_ANGLE_SPD)+model(MD_VW)*dt];% 最终的Dynamic Window
Vtmp = [Vs;Vd];  % 2 X 4矩阵    每一列依次为:最小速度 最大速度 最小角速度 最大角速度速度
Vr = [max(Vtmp(:,1)) min(Vtmp(:,2)) max(Vtmp(:,3)) min(Vtmp(:,4))]; % 设定的参数 与 计算的速度 比较%% Motion Model 根据当前状态推算下一个控制周期(dt)的状态。    oh!坐标变换的计算原理?
% u = [vt; wt];当前时刻的速度、角速度 x = 状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
function x = f(x, u)
global dt;
F = [1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 00 0 0 0 0];B = [dt*cos(x(3)) 0dt*sin(x(3)) 00 dt1 00 1];x= F*x+B*u;  % 为何这样计算,暂不明白% 弧度和角度之间的换算
%% degree to radian
function radian = toRadian(degree)
radian = degree/180*pi;
%% radian to degree
function degree = toDegree(radian)
degree = radian/pi*180;
%% END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/582784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# WPF上位机开发(报表导出)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 对于在工厂上班的小伙伴来说&#xff0c;导出生产数据、生成报表&#xff0c;这是很习以为常的一个工作。之前的文章中&#xff0c;虽然我们也介绍…

如何使用mac电脑,1、使用快捷命令打开访达,2、使用终端命令创建文件,3、使用命令打开创建的文件,并且在vscode中打开

如何使用mac电脑 1、使用快捷命令打开访达 optioncommand空格键 快速进入访达 shiftcmmandn 创建一个空目录 2、使用终端命令创建文件 2.1进入文件夹 在终端页面输入“cd /Users/yunf/Desktop/”并按回车键&#xff08;此时进入到桌面文件夹&#xff0c;如果需要进入到其它…

代码随想录二刷 | 二叉树 |二叉搜索树中的搜索

代码随想录二刷 &#xff5c; 二叉树 &#xff5c;二叉搜索树中的搜索 题目描述解题思路递归法迭代法 代码实现递归法迭代法 题目描述 700.二叉搜索树中的搜索 给定二叉搜索树&#xff08;BST&#xff09;的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回…

apisix admin api 403 Forbidden(接口请求403)

故事背景 当你通过admin api 接口方式执行相关操作时&#xff0c;例如route、upstream设置&#xff0c;接口返回403 Forbidden&#xff0c; 例如 请求 curl -i "http://192.168.100.1:9180/apisix/admin/routes" -H X-API-KEY: edd1c9f034335f136f87ad84b625c8f1 -X…

【Gradio】1、Gradio 是什么

官网&#xff1a;https://www.gradio.app/ 一、Gradio 是什么 Gradio是一个用于创建机器学习模型交互式界面的 Python 库。通过Gradio&#xff0c;可以快速地为模型构建一个可视化的、易于使用的Web界面&#xff0c;无需编写任何Web前端代码。 Gradio 支持多种不同类型的输入…

从Java 8到Java 17:Spring Boot项目升级的终极指南

Java的世界一直在进步&#xff0c;随着Java 17的发布&#xff0c;众多开发者面临着将他们的Spring Boot应用从Java 8迁移到最新版本的任务。在这篇博客中&#xff0c;我将详细介绍如何平滑、高效地完成这一升级过程。从梳理可能的挑战到实际操作步骤&#xff0c;我将为你的升级…

win32 菜单编程学习1

新建一个Win32空工程; 添加一个main.cpp,添加一个窗口的win32代码; 运行,出来一个窗口,此时没有菜单; 然后在资源中插入菜单; 编辑菜单; 此时自动生成resource.h; 里面包含, #define IDR_MENU1 101 #define ID_TEST1_TEST101 …

嵌入式开发——ADC模拟信号和数字信号

模拟信号和数字信号 模拟信号 自然界中大多数物理量是连续变化的,比如温度、声音、压力等灯,它们在一定时间内,可以有无限多个不同的取值,这些信号就是模拟信号。模拟信号就是指用连续变化的物理量所表示的信号。 自然界中的物理量都需要通过传感器将其转换成电信号后,才能进…

桥接模式-举例

概叙&#xff1a;桥接模式用一种巧妙的方式处理多层继承存在的问题&#xff0c; 用抽象关联取代了传统的多层继承&#xff0c; 将类之间的静态继承关系转换为动态的对象组合关系&#xff0c; 使得系统更加灵活&#xff0c;并易于扩展&#xff0c; 同时有效控制了系统中类的个数…

Python武器库开发-武器库篇之Git创建远程仓库和建立SSH key 免密登陆(三十七)

武器库篇之Git创建远程仓库和建立SSH key 免密登陆(三十七) Git是一种版本控制系统&#xff0c;用于跟踪文件的更改和协调多人开发项目。它可以记录文件的历史更改&#xff0c;协助多人协作开发&#xff0c;并提供分支管理功能。Git是一个分布式系统&#xff0c;意味着每个人在…

听说!Art-DAQ实现了与LabVIEW的无缝连接

前言 阿尔泰科技与时俱进&#xff0c;推出Art-DAQ程序&#xff0c;与LabVIEW无缝连接&#xff0c;形成系统平台体系。持续不断地获取行业新技术&#xff0c;完善自主知识产权产品的研发&#xff0c;为客户提供优质服务。 什么是Labview&#xff1f; 从产品的角度来看&#x…

java项目应用MQTT传输数据

一、概述 近期做的一个项目需要传输数据给第三方。根据协定&#xff0c;采用MQTT进行数据的发送和订阅。一般来说&#xff0c;不通系统进行数据对接&#xff0c;一般采用RESTFul接口&#xff0c;走http。mqtt的话&#xff0c;顾名思义&#xff0c;就是一个消息队列。相比RESTF…

透彻掌握GIT基础使用

网址 https://learngitbranching.js.org/?localezh_CN 清屏 clear重新开始reset

科荣AIO UtilServlet存在任意文件读取漏洞

文章目录 产品简介漏洞概述指纹识别漏洞利用修复建议 产品简介 科荣AIO是一款企业管理软件&#xff0c;提供企业一体化管理解决方案。它整合了ERP&#xff08;如进销存、财务管理&#xff09;、OA&#xff08;办公自动化&#xff09;、CRM&#xff08;客户关系管理&#xff09…

阿里云数据库PolarDB费用价格_MySQL版_PolarDB_分布式版

阿里云数据库PolarDB租用价格表&#xff0c;云数据库PolarDB MySQL版2核4GB&#xff08;通用&#xff09;、2个节点、60 GB存储空间55元5天&#xff0c;云数据库 PolarDB 分布式版标准版2核16G&#xff08;通用&#xff09;57.6元3天&#xff0c;阿里云百科aliyunbaike.com分享…

Leetcode—1572.矩阵对角线元素的和【简单】

2023每日刷题&#xff08;七十三&#xff09; Leetcode—1572.矩阵对角线元素的和 实现代码 class Solution { public:int diagonalSum(vector<vector<int>>& mat) {int n mat.size();if(n 1) {return mat[0][0];}int sum 0;int i 0, j n - 1;while(i &…

Bean 生命周期 和 SpringMVC 执行过程

这里简单记录下 Bean 生命周期的过程&#xff0c;方便自己日后面试用。源码部分还没看懂&#xff0c;这里先贴上结论 源码 结论

遥感技术应用于作物类型种植面积估算实例

1.农作物遥感分类 1.1 利用多时相环境星 CCD 数据作物分类识别实验 采用支持向量机分类器进行基于象素遥感影像分类方法。在分类过程中&#xff0c;分别对不同日期的单景环境星数据以及不同日期环境星数据的组合进行分类&#xff0c;以评价环境星在作物分类中的应用潜力&#x…

云计算:OpenStack 配置云主机实例的资源实现内网互通

目录 一、实验 1. 环境 2.配置项目及用户 3.配置规格实例与镜像 4.配置VPC 5. 配置安全组 6. 创建云主机 cs_01 &#xff08;cirros系统&#xff09; 7.创建云主机 cs_02 &#xff08;cirros系统&#xff09; 8.创建云主机 cs_03 &#xff08;cirros系统&#xff09; …

NFC物联网智能锁安全测试研究

针对短距离无线通信在物联网智能锁实际运用中的安全机制问题&#xff0c;通过理论分析和实际操作演示潜在的攻击流程&#xff0c;发现其存在的安全漏洞并提出可行的加固方法&#xff0c;并对加固后的通信系统进行CPN建模与安全性分析&#xff0c;对无线通信协议的安全性能提升、…