模式识别与机器学习-SVM(线性支持向量机)

线性支持向量机

  • 线性支持向量机
    • 间隔距离
    • 学习的对偶算法
    • 算法:线性可分支持向量机学习算法
    • 线性可分支持向量机例子

谨以此博客作为复习期间的记录

线性支持向量机

在这里插入图片描述
在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。
其中,分割平面可以用以下式子表示:
w x + b = 0 wx+b = 0 wx+b=0
w 和 b w\text{和}b wb都是有待学习的参数,SVM的核心思想之一就是找到这样的一个平面,使得间隔距离最大。那么该如何表述间隔距离呢?

间隔距离

在分割平面 w x + b = 0 wx+b = 0 wx+b=0确定的情况下,对每一个样本点 x i , ∣ w x i + b ∣ x_i,|wx_i+b| xi,wxi+b可以表示样本点 x i x_i xi到分割平面的距离。而若是二分类, y i ∈ { 1 , − 1 } y_i \in \{1,-1\} yi{1,1},那么 y i ( w x i + b ) y_i(wx_i+b) yi(wxi+b)同样可以表示样本点到分割平面的距离。

对于二分类问题,数据点 x i \mathbf{x}_i xi 到超平面的函数间隔定义为: γ ^ i = y i ( w ⋅ x i + b ) \hat{\gamma}_i = y_i (\mathbf{w} \cdot \mathbf{x}_i + b) γ^i=yi(wxi+b)

函数间隔的正负号表示数据点所属的类别和超平面分割的一致性。当 γ ^ i > 0 \hat{\gamma}_i > 0 γ^i>0 时,数据点 x i \mathbf{x}_i xi 被正确地分类到超平面两侧的区域,而当 γ ^ i < 0 \hat{\gamma}_i < 0 γ^i<0 时,数据点被错误地分类或位于超平面上。若 γ ^ i = 0 \hat{\gamma}_i = 0 γ^i=0,则表示数据点在超平面上。

而这里就可以得出SVM的初步思想:最大化最小函数间隔,公式表述如下
m a x m i n ( γ ^ i ) i = 1... N max \quad min(\hat{\gamma}_i) \qquad i = 1...N maxmin(γ^i)i=1...N
也就是在所有样本点 ( x i , y i ) (x_i,y_i) (xi,yi)中,可以找到离分割平面最近的点,我们想让这些点的距离达到最大。但是有一个问题,但是选择分离超平面时,只有函数间隔还不够.因为只要成比例地改变 w w w b b b ,例如将它们改为 2 w 2w 2w 2 b 2b 2b ,超平面并没有改变,但函数间隔却成为原来的 2 倍.这一事实启示我们,可以对分离超平面的法向量 w w w 加某些约束,如规范化 ∣ ∣ w ∣ ∣ = 1 ||w|| = 1 ∣∣w∣∣=1,这时函数间隔就变为了几何间隔。
几何间隔 对于给定的训练数据集 T T T 和超平面 ( w , b ) (w, b) (w,b), 定义超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔为
γ i = y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) \gamma_i=y_i\left(\frac{w}{\|w\|} \cdot x_i+\frac{b}{\|w\|}\right) γi=yi(wwxi+wb)

定义超平面 ( w , b ) (w, b) (w,b) 关于训练数据集 T T T 的几何间隔为超平面 ( w , b ) (w, b) (w,b) 关于 T T T 中所有样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔之最小值, 即
γ = min ⁡ i = 1 , ⋯ , N γ i \gamma=\min _{i=1, \cdots, N} \gamma_i γ=i=1,,Nminγi

超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔一般是实例点到超平面的带符号的距离 (signed distance), 当样本点被超平面正确分类时就是实例点到超平面的距离.

从函数间隔和几何间隔的定义 (式(7.3) 式(7.6))可知, 函数间隔和几何间隔有下面的关系:
γ i = γ ^ i ∥ w ∥ γ = γ ^ ∥ w ∥ \begin{gathered} \gamma_i=\frac{\hat{\gamma}_i}{\|w\|} \\ \gamma=\frac{\hat{\gamma}}{\|w\|} \end{gathered} γi=wγ^iγ=wγ^

如果 ∥ w ∥ = 1 \|w\|=1 w=1, 那么函数间隔和几何间隔相等. 如果超平面参数 w w w b b b 成比例地改变 (超平面没有改变),函数间隔也按此比例改变,而几何间隔不变.

那么,优化目标可以等价的表述如下
maximize γ subject to γ ≤ y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \gamma \\ & \text{subject to} \quad \gamma \leq y_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_i + \frac{b}{\|\mathbf{w}\|}\right), \quad i = 1, 2, \dots, n \end{align*} maximizeγsubject toγyi(wwxi+wb),i=1,2,,n
转化为几何间隔:

maximize γ ^ ∥ w ∥ subject to γ ^ ≤ y i ( w ⋅ x i + b ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \frac{\hat{\gamma}}{\|w\|} \\ & \text{subject to} \quad \hat{\gamma} \leq y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right), \quad i = 1, 2, \dots, n \end{align*} maximizewγ^subject toγ^yi(wxi+b),i=1,2,,n
可以令 γ ^ = 1 \hat{\gamma} = 1 γ^=1,目标函数变为 m a x i m i z e 1 ∣ ∣ w ∣ ∣ maximize \quad\frac{1}{||w||} maximize∣∣w∣∣1,等价于 m i n i m i z e 1 2 ∣ ∣ w ∣ ∣ minimize\quad \frac{1}{2}||w|| minimize21∣∣w∣∣.原问题可化为以下形式.
minimize 1 2 ∣ ∣ w ∣ ∣ 2 subject to y i ( w ⋅ x i + b ) − 1 ≥ 0 , i = 1 , 2 , … , n \begin{align*} & \text{minimize} \quad \frac{1}{2}||w||^2\\ & \text{subject to} \quad y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right) - 1\geq 0, \quad i = 1, 2, \dots, n \end{align*} minimize21∣∣w2subject toyi(wxi+b)10,i=1,2,,n
以上是一个凸优化问题,通过求解上述问题即可得到最终的最优决策平面。
在这里插入图片描述
在决定分离超平面时只有支持向量起作用,而其他实例点并不起作用.如果移动支持向量将改变所求的解;但是如果在间隔边界以外移动其他实例点,甚至去掉这些点,则解是不会改变的.由于支持向量在确定分离超平面中起着决定性作用,所以将这种分类模型称为支持向量机.支持向量的个数一般很少,所以支持向量机由很少的“重要的”训练样本确定.

学习的对偶算法

为了求解上述问题,可以构造拉格朗日函数,通过求解对偶问题得到原始问题的最优解。
这样做的优点,一是对偶问题往往更容易求解;二是自然引入核函数,进而推广到非线性分类问题。
首先构建拉格朗日函数 (Lagrange function). 为此, 对每一个不等式约束引进拉格朗日乘子 (Lagrange multiplier) α i ⩾ 0 , i = 1 , 2 , ⋯ , N \alpha_i \geqslant 0, i=1,2, \cdots, N αi0,i=1,2,,N, 定义拉格朗日函数:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|w\|^2-\sum_{i=1}^N \alpha_i y_i\left(w \cdot x_i+b\right)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi
其中, α = ( α 1 , α 2 , ⋯ , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量.
根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题:
max ⁡ α min ⁡ w , b L ( w , b , α ) \max _\alpha \min _{w, b} L(w, b, \alpha) αmaxw,bminL(w,b,α)

所以, 为了得到对偶问题的解, 需要先求 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w , b w, b w,b 的极小, 再求对 α \alpha α 的极大.

拉格朗日函数为:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^2-\sum_{i=1}^N \alpha_i y_i(\mathbf{w} \cdot \mathbf{x}_i+b)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi

其中, α = ( α 1 , α 2 , ⋯ , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量。

接下来,我们进行极小化 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w w w b b b的过程。需要对 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) 分别对 w w w b b b 求偏导,并令其等于零:

w w w 的偏导数:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 \frac{\partial L}{\partial w} = w - \sum_{i=1}^N \alpha_i y_i x_i = 0 wL=wi=1Nαiyixi=0
得到: w = ∑ i = 1 N α i y i x i w = \sum_{i=1}^N \alpha_i y_i x_i w=i=1Nαiyixi

b b b 的偏导数:
∂ L ∂ b = − ∑ i = 1 N α i y i = 0 \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i y_i = 0 bL=i=1Nαiyi=0
得到: ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0

将上述对 w w w b b b 的结果代入拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α),得到极小化后的结果

这样,对偶问题可以表示为:
min ⁡ α − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i \min_\alpha -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i αmin21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi
其中, α i ⩾ 0 \alpha_i \geqslant 0 αi0 i = 1 , 2 , ⋯ , N i=1, 2, \cdots, N i=1,2,,N,并且满足 ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0
然后,对拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) α \alpha α 求极大值,这样就可以得到对偶问题的解。

那么求解得到 α \alpha α之后,该如何反求出 w ∗ , b ∗ w^*,b^* w,b呢?
根据KKT条件,有
∇ w L ( w ∗ , b ∗ , α ∗ ) = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 ∇ b L ( w ∗ , b ∗ , α ∗ ) = − ∑ i = 1 N α i ∗ y i = 0 α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 ) = 0 , i = 1 , 2 , ⋯ , N y i ( w ∗ ⋅ x i + b ∗ ) − 1 ⩾ 0 , i = 1 , 2 , ⋯ , N α i ∗ ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \nabla_w L\left(w^*, b^*, \alpha^*\right)=w^*-\sum_{i=1}^N \alpha_i^* y_i x_i=0 \\ & \nabla_b L\left(w^*, b^*, \alpha^*\right)=-\sum_{i=1}^N \alpha_i^* y_i=0 \\ & \alpha_i^*\left(y_i\left(w^* \cdot x_i+b^*\right)-1\right)=0, \quad i=1,2, \cdots, N \\ & y_i\left(w^* \cdot x_i+b^*\right)-1 \geqslant 0, \quad i=1,2, \cdots, N \\ & \alpha_i^* \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} wL(w,b,α)=wi=1Nαiyixi=0bL(w,b,α)=i=1Nαiyi=0αi(yi(wxi+b)1)=0,i=1,2,,Nyi(wxi+b)10,i=1,2,,Nαi0,i=1,2,,N
由此得
w ∗ = ∑ i α i ∗ y i x i w^*=\sum_i \alpha_i^* y_i x_i w=iαiyixi
其中至少有一个 α j ∗ > 0 \alpha_j^*>0 αj>0 (用反证法, 假设 α ∗ = 0 \alpha^*=0 α=0, 由第一条KKT条件可知 w ∗ = 0 w^*=0 w=0, 而 w ∗ = 0 w^*=0 w=0不是原始最优化问题的解, 产生矛盾), 对此 j j j
y j ( w ∗ ⋅ x j + b ∗ ) − 1 = 0 y_j\left(w^* \cdot x_j+b^*\right)-1=0 yj(wxj+b)1=0
y j 2 = 1 y_j^2 = 1 yj2=1, y j ( w ∗ ⋅ x j + b ∗ ) − y j 2 = 0 y_j\left(w^* \cdot x_j+b^*\right)-y_j^2=0 yj(wxj+b)yj2=0进而得出 w ∗ ⋅ x j + b ∗ − y j = 0 w^* \cdot x_j+b^* - y_j = 0 wxj+byj=0
因此,在求解出 α ∗ \alpha^* α之后,可以得到决策平面的 w ∗ 和 b ∗ w^*和b^* wb
w ∗ = ∑ i α i ∗ y i x i b ∗ = y j − w ∗ ⋅ x j w^*=\sum_i \alpha_i^* y_i x_i\\ b^* = y_j - w^* \cdot x_j w=iαiyixib=yjwxj

算法:线性可分支持向量机学习算法

输入: 线性可分训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xiX=Rn,yi Y = { − 1 , + 1 } , i = 1 , 2 , ⋯ , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={1,+1},i=1,2,,N;
输出: 分离超平面和分类决策函数.
(1)构造并求解约束最优化问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯ , α N ∗ ) T \alpha^*=\left(\alpha_1^*, \alpha_2^*, \cdots, \alpha_N^*\right)^{\mathrm{T}} α=(α1,α2,,αN)T.
(2) 计算
w ∗ = ∑ i = 1 N α i ∗ y i x i w^*=\sum_{i=1}^N \alpha_i^* y_i x_i w=i=1Nαiyixi

并选择 α ∗ \alpha^* α 的一个正分量 α j ∗ > 0 \alpha_j^*>0 αj>0, 计算
b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N \alpha_i^* y_i\left(x_i \cdot x_j\right) b=yji=1Nαiyi(xixj)

(3) 求得分离超平面
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 wx+b=0

分类决策函数:
f ( x ) = sign ⁡ ( w ∗ ⋅ x + b ∗ ) f(x)=\operatorname{sign}\left(w^* \cdot x+b^*\right) f(x)=sign(wx+b)

在线性可分支持向量机中, w ∗ w^* w b ∗ b^* b 只依赖于训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi), 而其他样本点对 w ∗ w^* w b ∗ b^* b 没有影响. 我们将训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的实例点 x i ∈ R n x_i \in \mathbf{R}^n xiRn 称为支持向量.

线性可分支持向量机例子

在这里插入图片描述
带入
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N
解 根据所给数据, 对偶问题是
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i = 1 2 ( 18 α 1 2 + 25 α 2 2 + 2 α 3 2 + 42 α 1 α 2 − 12 α 1 α 3 − 14 α 2 α 3 ) − α 1 − α 2 − α 3 s.t.  α 1 + α 2 − α 3 = 0 α i ⩾ 0 , i = 1 , 2 , 3 \begin{array}{ll} \min _\alpha & \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & =\frac{1}{2}\left(18 \alpha_1^2+25 \alpha_2^2+2 \alpha_3^2+42 \alpha_1 \alpha_2-12 \alpha_1 \alpha_3-14 \alpha_2 \alpha_3\right)-\alpha_1-\alpha_2-\alpha_3 \\ \text { s.t. } & \alpha_1+\alpha_2-\alpha_3=0 \\ & \alpha_i \geqslant 0, \quad i=1,2,3 \end{array} minα s.t. 21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi=21(18α12+25α22+2α32+42α1α212α1α314α2α3)α1α2α3α1+α2α3=0αi0,i=1,2,3

解这一最优化问题. 将 α 3 = α 1 + α 2 \alpha_3=\alpha_1+\alpha_2 α3=α1+α2 代入目标函数并记为
s ( α 1 , α 2 ) = 4 α 1 2 + 13 2 α 2 2 + 10 α 1 α 2 − 2 α 1 − 2 α 2 s\left(\alpha_1, \alpha_2\right)=4 \alpha_1^2+\frac{13}{2} \alpha_2^2+10 \alpha_1 \alpha_2-2 \alpha_1-2 \alpha_2 s(α1,α2)=4α12+213α22+10α1α22α12α2

α 1 , α 2 \alpha_1, \alpha_2 α1,α2 求偏导数并令其为 0 , 易知 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) 在点 ( 3 2 , − 1 ) T \left(\frac{3}{2},-1\right)^{\mathrm{T}} (23,1)T 取极值, 但该点不满足约束条件 α 2 ⩾ 0 \alpha_2 \geqslant 0 α20, 所以最小值应在边界上达到.
α 1 = 0 \alpha_1=0 α1=0 时, 最小值 s ( 0 , 2 13 ) = − 2 13 s\left(0, \frac{2}{13}\right)=-\frac{2}{13} s(0,132)=132; 当 α 2 = 0 \alpha_2=0 α2=0 时, 最小值 s ( 1 4 , 0 ) = − 1 4 s\left(\frac{1}{4}, 0\right)=-\frac{1}{4} s(41,0)=41. 于是 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) α 1 = 1 4 , α 2 = 0 \alpha_1=\frac{1}{4}, \alpha_2=0 α1=41,α2=0 达到最小, 此时 α 3 = α 1 + α 2 = 1 4 \alpha_3=\alpha_1+\alpha_2=\frac{1}{4} α3=α1+α2=41.

这样, α 1 ∗ = α 3 ∗ = 1 4 \alpha_1^*=\alpha_3^*=\frac{1}{4} α1=α3=41 对应的实例点 x 1 , x 3 x_1, x_3 x1,x3 是支持向量. 计算得
w 1 ∗ = w 2 ∗ = 1 2 b ∗ = − 2 \begin{gathered} w_1^*=w_2^*=\frac{1}{2} \\ b^*=-2 \end{gathered} w1=w2=21b=2

分离超平面为
1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 = 0 \frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2=0 21x(1)+21x(2)2=0

分类决策函数为
f ( x ) = sign ⁡ ( 1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 ) f(x)=\operatorname{sign}\left(\frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2\right) f(x)=sign(21x(1)+21x(2)2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/580980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java文件操作实现doc格式转pdf

使用场景 在进行生成文档或者报告的时候&#xff0c;生成的word想要转换为pdf格式&#xff0c;这样才能保证报告的不可修改性&#xff0c;但是aspose-words的工具的License令人头疼&#xff0c;这篇文章就是解决这个doc转pdf的License的问题。话不多说&#xff0c;直接上实操。…

箭头函数的泛型,typescript中怎么写

TypeScript——泛型&#xff08;函数泛型、模板类型可以是多个、泛型的错误、泛型函数变量、泛型函数类型接口、泛型类1、泛型类2、泛型约束、泛型参数的默认类型&#xff09;、声明文件、Vue3.0集成ts_typescript 泛型函数-CSDN博客

【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

文章目录 &#x1f4dd;前言&#x1f320;什么是位段&#xff1f;&#x1f309; 位段的内存分配&#x1f309;VS怎么开辟位段空间呢&#xff1f;&#x1f309;位段的跨平台问题&#x1f320; 位段的应⽤&#x1f320;位段使⽤的注意事项&#x1f6a9;总结 &#x1f4dd;前言 本…

月薪高达6W,多家大厂急招鸿蒙开发工程师,现在转还来得及吗?

近期&#xff0c;“安卓版本与鸿蒙不再兼容”的词条登上微博热搜&#xff0c;华为鸿蒙加速按下向“纯血鸿蒙”蜕变的启动键&#xff0c;欲与 iOS、安卓在市场三分天下。 一批嗅觉灵敏的互联网大厂&#xff0c;已经完成或开始启动开发鸿蒙原生 APP&#xff0c;也于近期发布了和…

Java之ThreadLocal 详解

ThreadLocal 详解 原文地址&#xff1a;https://juejin.cn/post/6844904151567040519open in new window。 什么是ThreadLocal&#xff1f; ThreadLocal提供线程局部变量。这些变量与正常的变量不同&#xff0c;因为每一个线程在访问ThreadLocal实例的时候&#xff08;通过其…

视频流媒体直播云服务管理平台EasyNVS长时间运行出现崩溃情况是什么原因?该如何解决?

EasyNVS云管理平台具备汇聚与管理EasyGBS、EasyNVR等平台的能力&#xff0c;可以将接入的视频资源实现统一的视频能力输出&#xff0c;支持远程可视化运维等管理功能&#xff0c;还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户反馈&#xff0c;在长时间不间断…

CGAL的D维范围树和线段树

范围树和线段树是两种数据结构&#xff0c;用于高效地处理和查询数据。 范围树&#xff08;Range Tree&#xff09;是一种二叉树&#xff0c;它通过递归地将每个节点分割成两个子节点来存储一个点集。每个节点表示一个范围&#xff0c;并且存储该范围内所有点的最小和最大值。范…

静物摄影在UE5里运用几点记要

被摄体&#xff0c;相机与光源的关系&#xff0c;要增强立体感&#xff0c;摄像机与光源的位置关系要错开&#xff1b;b的立体感要更强 漫反射与点光源&#xff0c;UE5太阳光属于漫反射&#xff0c;整体比较柔和&#xff0c;但是阴影处比较黑&#xff1b;摄影棚会用反光板来增亮…

【模型】模型量化技术:动态范围、全整数和Float16量化

目录 一 动态范围量化 二 全整数量化 三 float16量化 通常&#xff0c;表示神经网络的数据类型是32位浮点数&#xff08;float32&#xff09;&#xff0c;这种数据类型可以提供高精度的计算&#xff0c;但是在计算资源和存储空间有限的设备上运行神经网络时&#xff0c;会带…

SpringBoot 异步编程浅谈

1. 需求背景 当我们需要提高系统的并发性能时&#xff0c;我们可以将耗时的操作异步执行&#xff0c;从而避免线程阻塞&#xff0c;提高系统的并发性能。例如&#xff0c;在处理大量的并发请求时&#xff0c;如果每个请求都是同步阻塞的方式处 理&#xff0c;系统的响应时间会…

Git使用教程 gittutorial

该教程对该文章的翻译&#xff1a;https://git-scm.com/docs/gittutorial 本文介绍怎用使用 Git 导入新的工程、修改文件及如何其他人同步开发。 首先&#xff0c; 可以使用以下指令获取文档帮助 git help log笔者注&#xff1a;不建议看这个文档&#xff0c;标准的语法介绍…

FreeRTOS的学习

1.创建函数和删除 动态创建为FreeRTOS分配的堆栈&#xff08;方便&#xff09;&#xff0c;而静态创建为人为分配空间。动态应用多任务中必须有while&#xff08;1&#xff09;否则只会执行一次任务中的延时要用 vTaskDelay(500); 延时期间执行其它任务 任务中的延时使…

postman进阶使用

前言 对于postman的基础其实很容易上手实现&#xff0c;也有很多教程。 对于小编我来说&#xff0c;也基本可以实现开发任务。 但是今年我们的高级测试&#xff0c;搞了一下postman&#xff0c;省去很多工作&#xff0c;让我感觉很有必要学一下 这篇文章是在 高级测试工程师ht…

01-Spring Security框架的认证和授权测试

Spring Security 介绍 认证功能与业务无关几乎是每个项目都要具备的功能,市面上有很多认证框架如Apache Shiro、CAS、Spring Security等 Spring Security是Spring家族的一份子且和Spring Cloud集成的很好&#xff0c;所以本项目采用Spring Security作为认证服务的技术框架 …

vue3(六)-基础入门之自定义组件与插槽、ref通信

一、全局组件 html: <div id"app"><mytemplace></mytemplace> </div>javascript: <script>const { createApp } Vueconst app createApp({})app.component(mytemplace, {template: <div><button>返回</button>…

canvas随机绘制100个五角星

canvas实例应用100 专栏提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。 canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重要的帮助。 文章目录 示例…

element-plus修改主题颜色

一、自定义scss文件 在src\css\styles\element目录下新建index.scss 代码如下 forward "element-plus/theme-chalk/src/common/var.scss" with ($colors: ("primary": ("base": #d61b1a,"color": #fff,),) );use "element-plus…

Java - 工厂设计模式

Java - 工厂设计模式 一. 简介二. 例子2.1 定义抽象类2.2 定义子类2.3 创建工厂2.4 测试 三. JDK中使用工厂模式的案例 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 工厂设计模式…

Day73力扣打卡

打卡记录 统计移除递增子数组的数目 II&#xff08;双指针&#xff09; 链接 class Solution:def incremovableSubarrayCount(self, a: List[int]) -> int:n len(a)i 0while i < n - 1 and a[i] < a[i 1]:i 1if i n - 1: # 每个非空子数组都可以移除return n …

普中STM32-PZ6806L开发板(STM32CubeMX创建项目并点亮LED灯)

简介 搭建一个用于驱动 STM32F103ZET6 GPIO点亮LED灯的任务;电路原理图 LED电路原理图 芯片引脚连接LED驱动引脚原理图 创建一个点亮LED灯的Keil 5项目 创建STM32CubeMX项目 New Project -> 单击 -> 芯片搜索STM32F103ZET6->双击创建 初始化时钟 调试设置 一…