HBase基础知识(七):HBase 性能优化示例全解

1. 高可用

在 HBase 中 HMaster 负责监控 HRegionServer 的生命周期,均衡 RegionServer 的负载, 如果 HMaster 挂掉了,那么整个 HBase 集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以 HBase 支持对 HMaster 的高可用配置。

1.关闭 HBase 集群(如果没有开启则跳过此步)

bin/stop-hbase.sh

2.在 conf 目录下创建 backup-masters 文件

touch conf/backup-masters

3.在 backup-masters 文件中配置高可用 HMaster 节点

echo hadoop103 > conf/backup-masters

4.将整个 conf 目录 scp 到其他节点

scp -r conf/ 
--hadoop103:/opt/module/hbase/
scp -r conf/ 
--hadoop104:/opt/module/hbase/

5.打开页面测试查看 http://hadooo102:16010

 

2. 预分区

每一个 region 维护着 StartRow 与 EndRow,如果加入的数据符合某个 Region 维护的 RowKey 范围,则该数据交给这个 Region 维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高 HBase 性能。

1.手动设定预分区

Hbase> create 'staff1','info','partition1',SPLITS =>  ['1000','2000','3000','4000'] 

2.生成 16 进制序列预分区

create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO =>  'HexStringSplit'} 

3.按照文件中设置的规则预分区 创建 splits.txt 文件内容如下:

aaaa bbbb cccc dddd 

然后执行:

create 'staff3','partition3',SPLITS_FILE => 'splits.txt' 

4.使用 JavaAPI 创建预分区

//自定义算法,产生一系列 hash 散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建 HbaseAdmin 实例
HBaseAdmin hAdmin = new HBaseAdmin(HbaseConfiguration.create());
//创建 HTableDescriptor 实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过 HTableDescriptor 实例和散列值二维数组创建带有预分区的 Hbase 表
hAdmin.createTable(tableDesc, splitKeys);

3. RowKey

设计 一条数据的唯一标识就是 RowKey,那么这条数据存储于哪个分区,取决于 RowKey 处于哪个一个预分区的区间内,设计 RowKey 的主要目的 ,就是让数据均匀的分布于所有的 region 中,在一定程度上防止数据倾斜。接下来我们就谈一谈 RowKey 常用的设计方案。

1.生成随机数、hash、散列值

比如:
原 本 rowKey 为 1001 的 , SHA1 后 变 成 :
dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原 本 rowKey 为 3001 的 , SHA1 后 变 成 :
49042c54de64a1e9bf0b33e00245660ef92dc7bd
原 本 rowKey 为 5001 的 , SHA1 后 变 成 :
7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的 rowKey 来 Hash
后作为每个分区的临界值。

2.字符串反转

20170524000001 转成 10000042507102
20170524000002 转成 20000042507102

这样也可以在一定程度上散列逐步 put 进来的数据。

3.字符串拼接

20170524000001_a12e
20170524000001_93i7

4. 内存优化

HBase 操作过程中需要大量的内存开销,毕竟 Table 是可以缓存在内存中的,一般会分配整个可用内存的 70%给 HBase 的 Java 堆。但是不建议分配非常大的堆内存,因为 GC 过 程持续太久会导致 RegionServer 处于长期不可用状态,一般 16~48G 内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

5. 基础优化

1.允许在 HDFS 的文件中追加内容

hdfs-site.xml、hbase-site.xml

属性:dfs.support.append 
解释:开启 HDFS 追加同步,可以优秀的配合 HBase 的数据同步和持久化。默认值为 true。 

2.优化 DataNode 允许的最大文件打开数

hdfs-site.xml

属性:dfs.datanode.max.transfer.threads 
解释:HBase 一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作, 设置为 4096 或者更高。默认值:4096

3.优化延迟高的数据操作的等待时间

hdfs-site.xml

属性:dfs.image.transfer.timeout 
解释:如果对于某一次数据操作来讲,延迟非常高,socket 需要等待更长的时间,建议把 该值设置为更大的值(默认 60000 毫秒),以确保 socket 不会被 timeout 掉。

4.优化数据的写入效率

mapred-site.xml

属性:
mapreduce.map.output.compress 
mapreduce.map.output.compress.codec 
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为 true,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec 或者其 他压缩方式。

5.设置 RPC 监听数量

hbase-site.xml

属性:Hbase.regionserver.handler.count 
解释:默认值为 30,用于指定 RPC 监听的数量,可以根据客户端的请求数进行调整,读写 请求较多时,增加此值。

6.优化 HStore 文件大小

hbase-site.xml

 属性:hbase.hregion.max.filesize 解释:默认值 10737418240(10GB),如果需要运行 HBase 的 MR 任务,可以减小此值, 因为一个 region 对应一个 map 任务,如果单个 region 过大,会导致 map 任务执行时间 过长。该值的意思就是,如果 HFile 的大小达到这个数值,则这个 region 会被切分为两 个 Hfile。

7.优化 HBase 客户端缓存

hbase-site.xml

属性:hbase.client.write.buffer 
解释:用于指定 Hbase 客户端缓存,增大该值可以减少 RPC 调用次数,但是会消耗更多内 存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少 RPC 次数的目的。

8.指定 scan.next 扫描 HBase 所获取的行数

hbase-site.xml

属性:hbase.client.scanner.caching 
解释:用于指定 scan.next 方法获取的默认行数,值越大,消耗内存越大。 

9.flush、compact、split 机制 当 MemStore 达到阈值,将 Memstore 中的数据 Flush 进 Storefile;compact 机制则是把 flush 出来的小文件合并成大的 Storefile 文件。split 则是当 Region 达到阈值,会把过大的 Region 一分为二。

涉及属性: 即:128M 就是 Memstore 的默认阈值

hbase.hregion.memstore.flush.size:134217728

即:这个参数的作用是当单个 HRegion 内所有的 Memstore 大小总和超过指定值时,flush 该 HRegion 的所有 memstore。RegionServer 的 flush 是通过将请求添加一个队列,模拟生 产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求 时,可能会导致内存陡增,最坏的情况是触发 OOM。

hbase.regionserver.global.memstore.upperLimit:0.4 
hbase.regionserver.global.memstore.lowerLimit:0.38

即:当 MemStore 使用内存总量达到hbase.regionserver.global.memstore.upperLimit 指定值时,将会有多个 MemStores flush 到文件中,MemStore flush 顺序是按照大小降序执行的,直到 刷新到 MemStore 使用内存略小于 lowerLimit。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用C求斐波那契数列-----(C每日一编程)

斐波那契数列: 斐波那契数列是指这样一个数列:1,1,2,3,5,8,13,21,34,55,89……这个数列从第3项开始 ,每一项都等于前两项之和。 递推…

数据库的连接池详解

什么是数据库连接池? 数据库连接池是一种管理和维护数据库连接的机制,用于提高数据库访问的性能和效率。连接池通过在应用程序启动时创建一组数据库连接,并在需要时将这些连接分配给应用程序,然后在不再需要时将其返回到池中。这…

Kubernetes (四) 资源清单及yaml文件详解

一. 资源清单 二. 编写yaml文件及内容详解 常用命令 …

前端---css 属性

css 作用是美化 HTML 网页和控制页面布局的,下面这些是经常使用的一些样式属性。 1. 布局常用样式属性 width 设置元素(标签)的宽度,如:width:100px;height 设置元素(标签)的高度,如:height:200px;background 设置元素背景色或者…

OSPF多区域配置-新版(12)

目录 整体拓扑 操作步骤 1.基本配置 1.1 配置R1的IP 1.2 配置R2的IP 1.3 配置R3的IP 1.4 配置R4的IP 1.5 配置R5的IP 1.6 配置R6的IP 1.7 配置PC-1的IP地址 1.8 配置PC-2的IP地址 1.9 配置PC-3的IP地址 1.10 配置PC-4的IP地址 1.11 检测R5与PC1连通性 1.12 检测…

Vue3-v-model原理

对比&#xff1a;Vue-2.3v-model原理-CSDN博客 v-model为:modelValue和update:modelValue的简写 表单类组件封装 父组件 <ChannelSelect v-model"cateId"></ChannelSelect> 子组件 <script setup> defineProps({modelValue: {type: [Number,…

人工智能_机器学习076_Kmeans聚类算法_体验_亚洲国家队自动划分类别---人工智能工作笔记0116

我们开始来看聚类算法 可以看到,聚类算法,其实就是发现事物之间的,潜在的关联,把 有关联的数据分为一类 我们先启动jupyter notebook,然后 我们看到这里我们需要两个测试文件 AsiaFootball.txt里面记录了,3年的,亚洲足球队的成绩

java获取两个List集合之间的交集、差集、并集

文章目录 方式一、jdk8 Stream求交集、并集、差集方式二、求交集方式三、collections4.CollectionUtils求交集、差集、并集 本文总结一下java中获取两个List之间的交集、补集、并集的几种方式。 最常用的通过for循环遍历两个集合的方式在这里就不整理了&#xff0c;主要整理一些…

结合el-upload修改支持上传图片、视频并预览

结合element plus的el-upload标签&#xff0c;实现上传图片和视频&#xff0c;并支持在线预览和放大 1、html部分 <el-form-item label"活动照片、视频"><el-uploadv-model:file-list"state.photoList":action"state.uploadUrl"accept…

数据分析——数据预处理和数据管道构建

目标&#xff1a;对于拿到的一个任意数据集&#xff0c;编写类似数据加载程序&#xff0c;以适应深度学习的研究。 框架&#xff1a; 针对不同的时间序列数据集&#xff0c;可以总结如下关键步骤&#xff0c;以编写类似上述代码的深度学习数据处理流程&#xff1a; 1. **了解…

MacOS编译安装PHP5.6

PHP&#xff1a;安装PHP5.6 安装依赖可以省略&#xff0c;缺少哪个装哪个即可&#xff0c;类似linux yum install libxml2 libxml2-devel openssl openssl-devel bzip2 bzip2-devel libcurl libcurl-devel libjpeg libjpeg-devel libpng libpng-devel freetype freetype-deve…

开源低代码开发平台如何在数字化转型中发挥价值?

当前&#xff0c;数字化转型升级是发展潮流&#xff0c;也是很多企业提升市场竞争力&#xff0c;获得更多利润价值的发展路径。作为提质增效的办公利器&#xff0c;开源低代码开发平台也将发挥应有的价值和作用&#xff0c;在推动企业数字化转型和流程化办公的过程中贡献力量&a…

Linux - 记录问题:Ubuntu查看文件夹大小

在Ubuntu中&#xff0c;你可以使用du命令来查看文件夹的大小。du命令的全称是"disk usage"&#xff0c;用于估计和显示目录或文件的磁盘使用空间。 如果你想查看某个特定文件夹的大小&#xff0c;你可以使用以下命令&#xff1a; du -sh /path/to/directory在这个命…

layui表格中预览视频和图片

全代码 <!DOCTYPE html> <html><head><title>Layui&#xff1a;数据表格table中预览图片、视频</title><meta charset"utf-8"/><link rel"stylesheet" href"../dist/css/layui.css"><style>&l…

竞赛保研 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

文章目录 0 简介1 常用的分类网络介绍1.1 CNN1.2 VGG1.3 GoogleNet 2 图像分类部分代码实现2.1 环境依赖2.2 需要导入的包2.3 参数设置(路径&#xff0c;图像尺寸&#xff0c;数据集分割比例)2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)2.5 数据预…

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…

RabbitMQ 常见问题

1. 如何保证消息顺序消费 在RabbitMQ中&#xff0c;消息最终会保存在队列中&#xff0c;在同一个队列中&#xff0c;消息是顺序的&#xff0c;保持先进先出的原则&#xff0c;这个由Rabbitmq保证。而不同队列中的消息&#xff0c;RabbitMQ 是无法保证其顺序性。顺序消费主要是…

UDP攻击是什么?遇到UDP攻击怎么办

UDP攻击&#xff0c;也称为UDP洪水攻击&#xff0c;是一种拒绝服务&#xff08;DoS&#xff09;或分布式拒绝服务&#xff08;DDoS&#xff09;攻击的形式。在此类攻击中&#xff0c;攻击者会发送大量的UDP流量到目标网络或服务器&#xff0c;以消耗其网络带宽或系统资源。由于…

爬虫工作量由小到大的思维转变---<第二十八章 Scrapy中间件说明书>

爬虫工作量由小到大的思维转变---&#xff1c;第二十六章 Scrapy通一通中间件的问题&#xff1e;-CSDN博客 前言: (书接上面链接)自定义中间件玩不明白? 好吧,写个翻译的文档点笔记,让中间件更通俗一点!!! 正文: 全局图: 爬虫中间件--->翻译笔记: from scrapy import s…

Scikit-Learn线性回归(二)

Scikit-Learn线性回归二:多项式回归 1、多项式回归2、多项式回归的原理3、Scikit-Learn多项式回归3.1、Scikit-Learn多项式回归API1、多项式回归 本文接上篇:Scikit-Learn线性回归(一) 上篇中,我们详细介绍了线性回归的概念、原理和推导,以及通过由浅入深的案例,详解了Sc…