竞赛保研 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

文章目录

  • 0 简介
  • 1 常用的分类网络介绍
    • 1.1 CNN
    • 1.2 VGG
    • 1.3 GoogleNet
  • 2 图像分类部分代码实现
    • 2.1 环境依赖
    • 2.2 需要导入的包
    • 2.3 参数设置(路径,图像尺寸,数据集分割比例)
    • 2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)
    • 2.5 数据预处理
    • 2.6 训练分类模型
    • 2.7 模型训练效果
    • 2.8 模型性能评估
  • 3 1000种图像分类
  • 4 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于人工智能的图像分类技术

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 常用的分类网络介绍

1.1 CNN

传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失函数。如下图:

在这里插入图片描述

  • 卷积层(convolution layer): 执行卷积操作提取底层到高层的特征,发掘出图片局部关联性质和空间不变性质。

  • 池化层(pooling layer): 执行降采样操作。通过取卷积输出特征图中局部区块的最大值(max-pooling)或者均值(avg-pooling)。降采样也是图像处理中常见的一种操作,可以过滤掉一些不重要的高频信息。

  • 全连接层(fully-connected layer,或者fc layer): 输入层到隐藏层的神经元是全部连接的。

  • 非线性变化: 卷积层、全连接层后面一般都会接非线性变化层,例如Sigmoid、Tanh、ReLu等来增强网络的表达能力,在CNN里最常使用的为ReLu激活函数。

  • Dropout : 在模型训练阶段随机让一些隐层节点权重不工作,提高网络的泛化能力,一定程度上防止过拟合

在CNN的训练过程总,由于每一层的参数都是不断更新的,会导致下一次输入分布发生变化,这样就需要在训练过程中花费时间去设计参数。在后续提出的BN算法中,由于每一层都做了归一化处理,使得每一层的分布相对稳定,而且实验证明该算法加速了模型的收敛过程,所以被广泛应用到较深的模型中。

1.2 VGG

VGG 模型是由牛津大学提出的(19层网络),该模型的特点是加宽加深了网络结构,核心是五组卷积操作,每两组之间做Max-
Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。该模型由于每组内卷积层的不同主要分为
11、13、16、19 这几种模型

在这里插入图片描述

增加网络深度和宽度,也就意味着巨量的参数,而巨量参数容易产生过拟合,也会大大增加计算量。

1.3 GoogleNet

GoogleNet模型由多组Inception模块组成,模型设计借鉴了NIN的一些思想.

NIN模型特点:

  • 1. 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络,即在线性卷积后面增加若干层1x1的卷积,这样可以提取出高度非线性特征。
    
  • 2)设计最后一层卷积层包含类别维度大小的特征图,然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。

在这里插入图片描述

2 图像分类部分代码实现

2.1 环境依赖

python 3.7
jupyter-notebook : 6.0.3
cudatoolkit 10.0.130
cudnn 7.6.5
tensorflow-gpu 2.0.0
scikit-learn 0.22.1
numpy
cv2
matplotlib

2.2 需要导入的包

  import osimport cv2import numpy as npimport pandas as pdimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,modelsfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.optimizers import Adamfrom tensorflow.keras.callbacks import Callbackfrom tensorflow.keras.utils import to_categoricalfrom tensorflow.keras.applications import VGG19from tensorflow.keras.models import load_modelimport matplotlib.pyplot as pltfrom sklearn.preprocessing import label_binarizetf.compat.v1.disable_eager_execution()os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用GPU

2.3 参数设置(路径,图像尺寸,数据集分割比例)

 preprocessedFolder = '.\\ClassificationData\\' #预处理文件夹outModelFileName=".\\outModelFileName\\" ImageWidth = 512ImageHeight = 320ImageNumChannels = 3TrainingPercent = 70  #训练集比例ValidationPercent = 15 #验证集比例

2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)

def read_dl_classifier_data_set(preprocessedFolder):num = 0  # 图片的总数量cnt_class = 0  #图片所属的类别label_list = []  # 存放每个图像的label,图像的类别img_list = []   #存放图片数据for directory in os.listdir(preprocessedFolder):tmp_dir = preprocessedFolder + directorycnt_class += 1for image in os.listdir(tmp_dir):num += 1tmp_img_filepath = tmp_dir + '\\' + imageim = cv2.imread(tmp_img_filepath)  # numpy.ndarrayim = cv2.resize(im, (ImageWidth, ImageHeight))  # 重新设置图片的大小img_list.append(im)label_list.append(cnt_class)  # 在标签中添加类别print("Picture " + str(num) + "Load "+tmp_img_filepath+"successfully")
print("共有" + str(num) + "张图片")
print("all"+str(num)+"picturs belong to "+str(cnt_class)+"classes")
return np.array(img_list),np.array(label_list)all_data,all_label=read_dl_classifier_data_set(preprocessedFolder)

在这里插入图片描述

2.5 数据预处理

图像数据压缩, 标签数据进行独立热编码one-hot

def preprocess_dl_Image(all_data,all_label):all_data = all_data.astype("float32")/255  #把图像灰度值压缩到0--1.0便于神经网络训练all_label = to_categorical(all_label)  #对标签数据进行独立热编码return all_data,all_labelall_data,all_label = preprocess_dl_Image(all_data,all_label) #处理后的数据

对数据及进行划分(训练集:验证集:测试集 = 0.7:0.15:0.15)

def split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent):s = np.arange(all_data.shape[0])np.random.shuffle(s)  #随机打乱顺序all_data = all_data[s] #打乱后的图像数据all_label = all_label[s] #打乱后的标签数据all_len = all_data.shape[0]train_len = int(all_len*TrainingPercent/100)  #训练集长度valadation_len = int(all_len*ValidationPercent/100)#验证集长度temp_len=train_len+valadation_lentrain_data,train_label = all_data[0:train_len,:,:,:],all_label[0:train_len,:] #训练集valadation_data,valadation_label = all_data[train_len:temp_len, : , : , : ],all_label[train_len:temp_len, : ] #验证集test_data,test_label = all_data[temp_len:, : , : , : ],all_label[temp_len:, : ] #测试集return train_data,train_label,valadation_data,valadation_label,test_data,test_labeltrain_data,train_label,valadation_data,valadation_label,test_data,test_label=split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent)

2.6 训练分类模型

  • 使用迁移学习(基于VGG19)

  • epochs = 30

  • batch_size = 16

  • 使用 keras.callbacks.EarlyStopping 提前结束训练

    def train_classifier(train_data,train_label,valadation_data,valadation_label,lr=1e-4):conv_base = VGG19(weights='imagenet',include_top=False,input_shape=(ImageHeight, ImageWidth, 3) )  model = models.Sequential()model.add(conv_base)model.add(layers.Flatten())model.add(layers.Dense(30, activation='relu')) model.add(layers.Dense(6, activation='softmax')) #Dense: 全连接层。activation: 激励函数,‘linear’一般用在回归任务的输出层,而‘softmax’一般用在分类任务的输出层conv_base.trainable=Falsemodel.compile(loss='categorical_crossentropy',#loss: 拟合损失方法,这里用到了多分类损失函数交叉熵  optimizer=Adam(lr=lr),#optimizer: 优化器,梯度下降的优化方法 #rmspropmetrics=['accuracy'])model.summary() #每个层中的输出形状和参数。early_stoping =tf.keras.callbacks.EarlyStopping(monitor="val_loss",min_delta=0,patience=5,verbose=0,baseline=None,restore_best_weights=True)history = model.fit(train_data, train_label,batch_size=16, #更新梯度的批数据的大小 iteration = epochs / batch_size,epochs=30,  # 迭代次数validation_data=(valadation_data, valadation_label),  # 验证集callbacks=[early_stoping])return model,history
    model,history = train_classifier(train_data,train_label,valadation_data,valadation_label,)
    

在这里插入图片描述

2.7 模型训练效果

def plot_history(history):history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()plt.title('Train and valadation loss')history_df = pd.DataFrame(history.history)history_df[['accuracy', 'val_accuracy']].plot()plt.title('Train and valadation accuracy')plot_history(history)

在这里插入图片描述

2.8 模型性能评估

  • 使用测试集进行评估

  • 输出分类报告和混淆矩阵

  • 绘制ROC和AUC曲线

    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    import seaborn as sns
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集数据进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    print('验证集分类报告:\n',classification_report(Y_test,Y_pred_tta))
    confusion_mc = confusion_matrix(Y_test,Y_pred_tta)#混淆矩阵
    df_cm = pd.DataFrame(confusion_mc)
    plt.figure(figsize = (10,7))
    sns.heatmap(df_cm, annot=True, cmap="BuPu",linewidths=1.0,fmt="d")
    plt.title('PipeLine accuracy:{0:.3f}'.format(accuracy_score(Y_test,Y_pred_tta)),fontsize=20)
    plt.ylabel('True label',fontsize=20)
    plt.xlabel('Predicted label',fontsize=20)
    

在这里插入图片描述

在这里插入图片描述

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve
from sklearn import metrics
import matplotlib as mpl# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(test_data)
# 1、调用函数计算验证集的AUC 
print ('调用函数auc:', metrics.roc_auc_score(test_label, y_score, average='micro'))
# 2、手动计算验证集的AUC
#首先将矩阵test_label和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(test_label.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.figure(figsize = (10,7))
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title('37个验证集分类后的ROC和AUC', fontsize=18)
plt.show()

在这里插入图片描述

3 1000种图像分类

这是学长训练的能识别1000种类目标的图像分类模型,演示效果如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579641.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…

RabbitMQ 常见问题

1. 如何保证消息顺序消费 在RabbitMQ中,消息最终会保存在队列中,在同一个队列中,消息是顺序的,保持先进先出的原则,这个由Rabbitmq保证。而不同队列中的消息,RabbitMQ 是无法保证其顺序性。顺序消费主要是…

UDP攻击是什么?遇到UDP攻击怎么办

UDP攻击,也称为UDP洪水攻击,是一种拒绝服务(DoS)或分布式拒绝服务(DDoS)攻击的形式。在此类攻击中,攻击者会发送大量的UDP流量到目标网络或服务器,以消耗其网络带宽或系统资源。由于…

爬虫工作量由小到大的思维转变---<第二十八章 Scrapy中间件说明书>

爬虫工作量由小到大的思维转变---<第二十六章 Scrapy通一通中间件的问题>-CSDN博客 前言: (书接上面链接)自定义中间件玩不明白? 好吧,写个翻译的文档点笔记,让中间件更通俗一点!!! 正文: 全局图: 爬虫中间件--->翻译笔记: from scrapy import s…

Scikit-Learn线性回归(二)

Scikit-Learn线性回归二:多项式回归 1、多项式回归2、多项式回归的原理3、Scikit-Learn多项式回归3.1、Scikit-Learn多项式回归API1、多项式回归 本文接上篇:Scikit-Learn线性回归(一) 上篇中,我们详细介绍了线性回归的概念、原理和推导,以及通过由浅入深的案例,详解了Sc…

淘宝/天猫商品API:实时数据获取与安全隐私保护的指南

一、引言 随着电子商务的快速发展,淘宝/天猫等电商平台已成为商家和消费者的重要交易场所。对于电商企业而言,实时掌握店铺商品的销售情况、库存状态等信息至关重要。然而,手动管理和更新商品信息既费时又费力。因此,淘宝/天猫提…

随笔笔记-2023

随笔 computed 是基于他们的依赖进行缓存的,。如果要随时计算 new Date().now(因为不是响应式的),那么需要用 computed。 如果不希望用缓存那么就用 methods 字符与字节 1 字节8 位1B8 bit;1KB 1024B,1MB1024KB1024*1024B 编码:…

面试题之二HTTP和RPC的区别?

面试题之二 HTTP和RPC的区别? Ask范围:分布式和微服务 难度指数:4星 考察频率:70-80% 开发年限:3年左右 从三个方面来回答该问题: 一.功能特性 1)HTTP是属于应用层的协议:超文本传输协议…

【SpringCloud】-OpenFeign实战及源码解析、与Ribbon结合

一、背景介绍 二、正文 OpenFeign是什么? OpenFeign(简称Feign)是一个声明式的Web服务客户端,用于简化服务之间的HTTP通信。与Nacos和Ribbon等组件协同,以支持在微服务体系结构中方便地进行服务间的通信&#xff1b…

Linux账号与权限管理

目录 一、账号管理 1. 用户账号 1.1 概述 1.2 用户账号类型 1.3 用户账号区分 2. 组账号 2.1 概述 2.2 区分 3. 用户账号管理 3.1 重要文件存放位置 3.2 基本信息 3.3 添加用户 3.3.1 通式 3.3.2 选项示例 3.4 密码管理 3.4.1 通式 3.4.2 选项示例 3.4.3 免交…

macos Apple开发证书 应用签名p12证书 获取生成方法 codesign 证书获取

在开发macos应用的时候必须要对自己开发的应用进行签名才能使用, 下面介绍个人如何获取Apple开发签名证书. 必备条件, 你需要先安装 xcode , 注册一个苹果开发者账号 免费的就可以, 以下为获取流程 You need to create a cert through xcode. Additionally, you need to have…

深信服技术认证“SCCA-C”划重点:云计算基础

为帮助大家更加系统化地学习云计算知识,高效通过云计算工程师认证,深信服特推出“SCCA-C认证备考秘笈”,共十期内容。“考试重点”内容框架,帮助大家快速get重点知识。 划重点来啦 *点击图片放大展示 深信服云计算认证&#xff08…

[Angular] 笔记 10:服务与依赖注入

什么是 Services & Dependency Injection? chatgpt 回答: 在 Angular 中,Services 是用来提供特定功能或执行特定任务的可重用代码块。它们可以用于处理数据、执行 HTTP 请求、管理应用程序状态等。Dependency Injection(依赖注入&#…

浅谈互联网架构演变

更好的阅读体验 \large{\color{red}{更好的阅读体验}} 更好的阅读体验 前言 可以将某个项目或产品的架构体系按照如下方式分层: 业务层面:项目业务体系技术层面: 数据架构:数据持久层策略应用架构:应用层的实现方式 …

云原生Kubernetes系列 | Kubernetes Secret及ConfigMap

云原生Kubernetes系列 | Kubernetes Secret及Configmap 1. Secret及Configmap使用背景简介2. Secret2.1. Secret创建方式2.1.1. 命令行方式2.1.2. 文件方式2.1.3. 变量方式2.1.4. YAML文件方式2.2. Secret使用方式2.2.1. 用于传递配置文件2.2.3. 用于传递变量3. ConfigMap1. Se…

CPU亲和性和NUMA架构

何为CPU的亲和性 CPU的亲和性,进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性,进程迁移的频率小就意味着产生的负载小。亲和性一词是从affinity翻译来的,实际可以称为CPU绑定。 在多核运行的机器上,…

AlignBench:量身打造的中文大语言模型对齐评测

对齐(Alignment),是指大语言模型(LLM)与人类意图的一致性。换言之,就是让LLM生成的结果更加符合人类的预期,包括遵循人类的指令,理解人类的意图,进而能产生有帮助的回答等…

SadTalker数字人增加视频输出mp4质量精度

最近在用数字人简易方案,看到了sadtalker虽然效果差,但是可以作为一个快速方案,没有安装sd的版本,随便找了个一键安装包 设置如上 使用倒是非常简单,但是出现一个问题,就是输出的mp4都出马赛克了 界面上却…

Servlet见解2

4 创建servlet的三种方式 4.1 实现Servlet接口的方式 import javax.servlet.*; import javax.servlet.annotation.WebServlet; import java.io.IOException;WebServlet("/test1") public class Servlet1 implements Servlet {Overridepublic void init(ServletConf…

怎么实现Servlet的自动加载

在实际开发时,有时候会希望某些Servlet程序可以在Tomcat启动时随即启动。但在默认情况下,第一次访问servlet的时候,才创建servlet对象。 如果servlet构造函数里面的代码或者init方法里面的代码比较多,就会导致用户第一次访问serv…