三、协同度量学习
这一部分,我们讨论CML作为一种更自然的方法获得关联关系。CML的思路是这样的:我们在已知正例关系的user-item集合S上建立一个隐性反馈模型,并且学习user-item的距离作为他们的关系。学习到的距离使得S中的对更加紧密,而S之外的user-item对相对的远离。这个处理过程,源于三角不等性。也可以聚类:喜欢相同item的users,同一user喜欢的一些items。换句话说,通过学习度量可以获得已知的正例关系,这个关系不仅是user-item之间,而且包含user-user和item-item,而这是我们不能直接通过观察得到的。
3.1 Model Formulation