1.枚举法:
< tableRule name = " sharding-by-intfile" > < rule> < columns> user_id</ columns> < algorithm> hash-int</ algorithm> </ rule> </ tableRule>
< function name = " hash-int" class = " io.mycat.route.function.PartitionByFileMap" > < property name = " mapFile" > partition-hash-int.txt</ property> < property name = " type" > 0</ property> < property name = " defaultNode" > 0</ property> </ function> partition-hash-int.txt 配置:
10000=0
10010=1
上面columns 标识将要分片的表字段,algorithm 分片函数,
其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String,
所有的节点配置都是从0开始,及0代表节点1
/**
* defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点,结点为指定的值
*
默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
* 如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到
* 不识别的枚举值就会报错,
* like this:can't find datanode for sharding column:column_name val:ffffffff
*/
2.固定分片hash算法:
< tableRule name = " rule1" > < rule> < columns> user_id</ columns> < algorithm> func1</ algorithm> </ rule>
</ tableRule> < function name = " func1" class = " io.mycat.route.function.PartitionByLong" > < property name = " partitionCount" > 2,1</ property> < property name = " partitionLength" > 256,512</ property> </ function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
partitionCount 分片个数列表,partitionLength 分片范围列表
分区长度:默认为最大2^n=1024 ,即最大支持1024分区
约束 :
count,length两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024
用法例子:
@Test
public void testPartition() {// 本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区)// |< ---------------------1024------------------------> |// |< ----256---> |< ----256---> |< ----------512----------> |// | partition0 | partition1 | partition2 |// | 共2份,故count[0]=2 | 共1份,故count[1]=1 |int[] count = new int[] { 2, 1 };int[] length = new int[] { 256, 512 };PartitionUtil pu = new PartitionUtil(count, length);// 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值long offerId = 12345;String memberId = "qiushuo";// 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中int partNo1 = pu.partition(offerId);// 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);Assert.assertEquals(0, partNo1);Assert.assertEquals(2, partNo2);
}如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024
< function name = " func1" class = " org.opencloudb.route.function.PartitionByLong" > < property name = " partitionCount" > 4</ property> < property name = " partitionLength" > 256</ property> </ function>
3.范围约定:
< tableRule name = " auto-sharding-long" > < rule> < columns> user_id</ columns> < algorithm> rang-long</ algorithm> </ rule> </ tableRule>
< function name = " rang-long" class = " io.mycat.route.function.AutoPartitionByLong" > < property name = " mapFile" > autopartition-long.txt</ property> </ function>
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
rang-long 函数中mapFile代表配置文件路径
所有的节点配置都是从0开始,及0代表节点1,此配置非常简单,即预先制定可能的id范围到某个分片
4.求模法:
< tableRule name = " mod-long" > < rule> < columns> user_id</ columns> < algorithm> mod-long</ algorithm> </ rule> </ tableRule> < function name = " mod-long" class = " io.mycat.route.function.PartitionByMod" > < property name = " count" > 3</ property> </ function> 配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
此种配置非常明确即根据id与count(你的结点数)进行求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续
5.日期列分区法:
< tableRule name = " sharding-by-date" > < rule> < columns> create_time</ columns> < algorithm> sharding-by-date</ algorithm> </ rule> </ tableRule>
< function name = " sharding-by-date" class = " io.mycat.route.function..PartitionByDate" > < property name = " dateFormat" > yyyy-MM-dd</ property> < property name = " sBeginDate" > 2014-01-01</ property> < property name = " sPartionDay" > 10</ property> </ function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区还有一切特性请看源码Assert.assertEquals(true, 0 == partition.calculate("2021-01-01"));
Assert.assertEquals(true, 0 == partition.calculate("2021-01-10"));
Assert.assertEquals(true, 1 == partition.calculate("2021-01-11"));
Assert.assertEquals(true, 12 == partition.calculate("2021-05-01"));
6.通配取模:
< tableRule name = " sharding-by-pattern" > < rule> < columns> user_id</ columns> < algorithm> sharding-by-pattern</ algorithm> </ rule> </ tableRule>
< function name = " sharding-by-pattern" class = " io.mycat.route.function.PartitionByPattern" > < property name = " patternValue" > 256</ property> < property name = " defaultNode" > 2</ property> < property name = " mapFile" > partition-pattern.txt</ property> </ function>
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果不配置了默认,则默认是0即第一个结点
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数字数据,则会分配在defaoultNode 默认节点String idVal = "0";
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
idVal = "45a";
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
7.ASCII码求模通配:
< tableRule name = " sharding-by-prefixpattern" > < rule> < columns> user_id</ columns> < algorithm> sharding-by-prefixpattern</ algorithm> </ rule> </ tableRule>
< function name = " sharding-by-pattern" class = " io.mycat.route.function.PartitionByPrefixPattern" > < property name = " patternValue" > 256</ property> < property name = " prefixLength" > 5</ property> < property name = " mapFile" > partition-pattern.txt</ property> </ function> partition-pattern.txt# range start-end ,data node index
# ASCII
# 48-57=0-9
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推 此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的
即 分片数,
/**
* ASCII编码:
* 48-57=0-9阿拉伯数字
* 64、65-90=@、A-Z
* 97-122=a-z
*
*/
如 String idVal="gf89f9a";
Assert.assertEquals(true, 0==autoPartition.calculate(idVal));idVal="8df99a";
Assert.assertEquals(true, 4==autoPartition.calculate(idVal));idVal="8dhdf99a";
Assert.assertEquals(true, 3==autoPartition.calculate(idVal));
8.编程指定:
< tableRule name = " sharding-by-substring" > < rule> < columns> user_id</ columns> < algorithm> sharding-by-substring</ algorithm> </ rule> </ tableRule>
< function name = " sharding-by-substring" class = " io.mycat.route.function.PartitionDirectBySubString" > < property name = " startIndex" > 0</ property> < property name = " size" > 2</ property> < property name = " partitionCount" > 8</ property> < property name = " defaultPartition" > 0</ property> </ function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数
此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如id=05-100000002
在此配置中代表根据id中从startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没传默认分配到defaultPartition
9.字符串拆分hash解析:
< tableRule name= "sharding-by-stringhash" > < rule> < columns> user_id< / columns> < algorithm> sharding- by- stringhash< / algorithm> < / rule> < / tableRule>
< function name= "sharding-by-substring" class = "io.mycat.route.function.PartitionByString" > < property name= length> 512 < / property> < ! -- zero- based -- > < property name= "count" > 2 < / property> < property name= "hashSlice" > 0 : 2 < / property> < / function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数
函数中length代表字符串hash求模基数,count分区数,hashSlice hash预算位
即根据子字符串 hash运算hashSlice : 0 means str. length ( ) , - 1 means str. length ( ) - 1
public class PartitionByStringTest { @Test public void test ( ) { PartitionByString rule = new PartitionByString ( ) ; String idVal= null ; rule. setPartitionLength ( "512" ) ; rule. setPartitionCount ( "2" ) ; rule. init ( ) ; rule. setHashSlice ( "0:2" ) ;
rule = new PartitionByString ( ) ; rule. setPartitionLength ( "512" ) ; rule. setPartitionCount ( "2" ) ; rule. init ( ) ; rule. setHashSlice ( "-4:0" ) ; idVal = "aaaabbb0000" ; Assert . assertEquals ( true , 0 == rule. calculate ( idVal) ) ; idVal = "aaaabbb2359" ; Assert . assertEquals ( true , 0 == rule. calculate ( idVal) ) ; }
10.一致性hash:
< tableRule name = " sharding-by-murmur" > < rule> < columns> user_id</ columns> < algorithm> murmur</ algorithm> </ rule> </ tableRule>
< function name = " murmur" class = " io.mycat.route.function.PartitionByMurmurHash" > < property name = " seed" > 0</ property> < property name = " count" > 2</ property> < !-- 要分片的数据库节点数量,必须指定,否则没法分片— > < property name = " virtualBucketTimes" > 160</ property> </ function> 一致性hash预算有效解决了分布式数据的扩容问题,前1-9中id规则都多少存在数据扩容难题,而10规则解决了数据扩容难点