目录
- 1、前向传播
- 2、后向传播
这里是完成的吴恩达的深度学习课程作业中的一个inverted dropout的作业题,是一种很流行的正则化方式。这里做一个记录,重点记录了如何实现前向和后向的inverted dropout,都是代码片段,无法运行;完整的代码请参见吴恩达的第二课的第一周的作业。
1、前向传播
def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):"""Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.Arguments:X -- input dataset, of shape (2, number of examples)parameters -- python dictionary containing your parameters"W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape (20, 2)b1 -- bias vector of shape (20, 1)W2 -- weight matrix of shape (3, 20)b2 -- bias vector of shape (3, 1)W3 -- weight matrix of shape (1, 3)b3 -- bias vector of shape (1, 1)keep_prob - probability of keeping a neuron active during drop-out,scalarReturns:A3 -- last activation value, output of the forward propagation,of shape (1,1)cache -- tuple, information stored for computing the backward propagation"""np.random.seed(1)# retrieve parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)### START CODE HERE ### (approx. 4 lines) # Steps 1-4 below correspond to the Steps 1-4 described above. # Step 1: initialize matrix D1 = np.random.rand(..., ...)D1 = np.random.rand(A1.shape[0], A1.shape[1])# Step 2: convert entries of D1 to 0 or 1 # (using keep_prob as the threshold)D1 = D1 < keep_prob# Step 3: shut down some neurons of A1A1 = A1 * D1# Step 4: scale the value of neurons that haven't been shut downA1 = A1 / keep_prob### END CODE HERE ###Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)### START CODE HERE ### (approx. 4 lines)# Step 1: initialize matrix D2 = np.random.rand(..., ...)D2 = np.random.rand(A2.shape[0], A2.shape[1])# Step 2: convert entries of D2 to 0 or 1 # (using keep_prob as the threshold)D2 = D2 < keep_prob# Step 3: shut down some neurons of A2A2 = A2 * D2# Step 4: scale the value of neurons that haven't been shut downA2 = A2 / keep_prob### END CODE HERE ###Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)return A3, cache
2、后向传播
def backward_propagation_with_dropout(X, Y, cache, keep_prob):"""Implements the backward propagation of our baseline model to which we added dropout.Arguments:X -- input dataset, of shape (2, number of examples)Y -- "true" labels vector, of shape (output size, number of examples)cache -- cache output from forward_propagation_with_dropout()keep_prob - probability of keeping a neuronactive during drop-out, scalarReturns:gradients -- A dictionary with the gradients with respectto each parameter, activation and pre-activation variables"""m = X.shape[1](Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)### START CODE HERE ### (≈ 2 lines of code)# Step 1: Apply mask D2 to shut down the# same neurons as during the forward propagationdA2 = dA2 * D2# Step 2: Scale the value of neurons that haven't been shut downdA2 = dA2 / keep_prob ### END CODE HERE ###dZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)### START CODE HERE ### (≈ 2 lines of code)# Step 1: Apply mask D1 to shut down the# same neurons as during the forward propagationdA1 = dA1 * D1# Step 2: Scale the value of neurons that haven't been shut downdA1 = dA1 / keep_prob ### END CODE HERE ###dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients