inverted dropout示例

目录

  • 1、前向传播
  • 2、后向传播

这里是完成的吴恩达的深度学习课程作业中的一个inverted dropout的作业题,是一种很流行的正则化方式。这里做一个记录,重点记录了如何实现前向和后向的inverted dropout,都是代码片段,无法运行;完整的代码请参见吴恩达的第二课的第一周的作业。

1、前向传播

def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):"""Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.Arguments:X -- input dataset, of shape (2, number of examples)parameters -- python dictionary containing your parameters"W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape (20, 2)b1 -- bias vector of shape (20, 1)W2 -- weight matrix of shape (3, 20)b2 -- bias vector of shape (3, 1)W3 -- weight matrix of shape (1, 3)b3 -- bias vector of shape (1, 1)keep_prob - probability of keeping a neuron active during drop-out,scalarReturns:A3 -- last activation value, output of the forward propagation,of shape (1,1)cache -- tuple, information stored for computing the backward propagation"""np.random.seed(1)# retrieve parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above. # Step 1: initialize matrix D1 = np.random.rand(..., ...)D1 = np.random.rand(A1.shape[0], A1.shape[1])# Step 2: convert entries of D1 to 0 or 1 # (using keep_prob as the threshold)D1 = D1 < keep_prob# Step 3: shut down some neurons of A1A1 = A1 * D1# Step 4: scale the value of neurons that haven't been shut downA1 = A1 / keep_prob### END CODE HERE ###Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)### START CODE HERE ### (approx. 4 lines)# Step 1: initialize matrix D2 = np.random.rand(..., ...)D2 = np.random.rand(A2.shape[0], A2.shape[1])# Step 2: convert entries of D2 to 0 or 1 # (using keep_prob as the threshold)D2 = D2 < keep_prob# Step 3: shut down some neurons of A2A2 = A2 * D2# Step 4: scale the value of neurons that haven't been shut downA2 = A2 / keep_prob### END CODE HERE ###Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)return A3, cache

2、后向传播

def backward_propagation_with_dropout(X, Y, cache, keep_prob):"""Implements the backward propagation of our baseline model to which we added dropout.Arguments:X -- input dataset, of shape (2, number of examples)Y -- "true" labels vector, of shape (output size, number of examples)cache -- cache output from forward_propagation_with_dropout()keep_prob - probability of keeping a neuronactive during drop-out, scalarReturns:gradients -- A dictionary with the gradients with respectto each parameter, activation and pre-activation variables"""m = X.shape[1](Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)### START CODE HERE ### (≈ 2 lines of code)# Step 1: Apply mask D2 to shut down the# same neurons as during the forward propagationdA2 = dA2 * D2# Step 2: Scale the value of neurons that haven't been shut downdA2 = dA2 / keep_prob    ### END CODE HERE ###dZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)### START CODE HERE ### (≈ 2 lines of code)# Step 1: Apply mask D1 to shut down the# same neurons as during the forward propagationdA1 = dA1 * D1# Step 2: Scale the value of neurons that haven't been shut downdA1 = dA1 / keep_prob    ### END CODE HERE ###dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/569144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

球形坐标和Cartesian 坐标的转换 spherical coordinate

spherical coordinate 和cartesian坐标的转换&#xff0c; 个人认为在控制camera的时候最为有用&#xff0c;比如CS中的操作方式&#xff0c; 鼠标负责方向的改变&#xff0c;其恰恰就是球形坐标的改变。而camera的位置改变就是cartesian的改变&#xff0c;所以这两者的转换就必…

深度学习优化算法实现(Momentum, Adam)

目录Momentum初始化更新参数Adam初始化更新参数除了常见的梯度下降法外&#xff0c;还有几种比较通用的优化算法&#xff1b;表现都优于梯度下降法。本文只记录完成吴恩达深度学习作业时遇到的Momentum和Adam算法&#xff0c;而且只有简要的代码。具体原理请看深度学习优化算法…

【HANA系列】SAP HANA Studio出现Fetching Children...问题

公众号&#xff1a;SAP Technical本文作者&#xff1a;matinal原文出处&#xff1a;http://www.cnblogs.com/SAPmatinal/ 原文链接&#xff1a;【ABAP系列】SAP HANA Studio出现"Fetching Children..."问题前言部分 大家可以关注我的公众号&#xff0c;公众号里的排版…

朴素Bayse新闻分类实践

目录1、信息增益&#xff08;互信息&#xff09;介绍&#xff08;1&#xff09;西瓜书中的信息增益[^1]&#xff08;2&#xff09;PRML中的互信息[^2]&#xff08;3&#xff09; 其实他们是一个东西2、朴素Bayse新闻分类[^3]&#xff08;1&#xff09;常量及辅助函数&#xff0…

R树空间索引及其变种

1、R树及其变种&#xff1a;百度百科 2、R树详介&#xff1a;http://blog.csdn.net/jazywoo123/article/details/7792745 3、R树及变种小结 R树&#xff1a;叶子节点或中间节点都可能有交集。衡量指标有查询性能和更新性能&#xff0c;更新通过删除和插入实现。R树&#xff1a;…

Kaggle-泰坦尼克号

目录前言和感谢正题前言和感谢 机器学习本人还是一个新手&#xff0c;现在处在练习阶段。在网上找到了很多免费的比较老旧kaggle比赛讲解的python代码&#xff0c;在这里自己亲在体验并跟着过了一遍。在运行的过程中加入了自己的一些改动并且修改了一些存在的BUG&#xff0c;同…

hdu 六度分离 floyd

题目链接&#xff1a;http://acm.hdu.edu.cn/showproblem.php?pid1869 题意分析&#xff1a;比较简单的最短路算法&#xff0c;最后只需判断最远两点距离是否大于7即可。 /*六度分离Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot…

Kaggle-自行车租赁人数预测

目录前言和感谢正题前言和感谢 机器学习本人还是一个新手&#xff0c;现在处在练习阶段。在网上找到了很多免费的比较老旧kaggle比赛讲解的python代码&#xff0c;在这里自己亲在体验并跟着过了一遍。在运行的过程中加入了自己的一些改动并且修改了一些存在的BUG&#xff0c;同…

【数据仓库】OLTP系统和OLAP系统区别

OLTP&#xff1a;联机事务处理系统(OnLine Transaction Processing) OLAP&#xff1a;联机分析处理系统(OnLine Analytical Processing) 参考文档&#xff1a; 操作数据库系统(OLTP)和联机分析处理系统(OLAP)的区别转载于:https://www.cnblogs.com/badboy200800/p/11189478.htm…

吴恩达深度学习编程作业汇总

以下列表为吴恩达的深度学习课程所对应的编程作业列表&#xff0c;都直接指向了github的连接地址&#xff1b;这些作业也是我在网上购买&#xff0c;可能与官方的内容有所出入&#xff1b;同时由于有的训练集和测试集以及预训练好的参数过大&#xff0c;不便上传&#xff0c;所…

Good Numbers(HDU5447+唯一分解)

题目链接 传送门 题面 题意 首先定义对于\(k\)的好数\(u\)&#xff1a;如果\(u\leq k\)且\(u\)的所有质因子与\(k\)的质因子一样则称\(u\)对于\(k\)是一个好数。 现给你两个数\(k1,k2(1\leq k1,k2\leq 10^{24})\)&#xff0c;要你求\(k1,k2\)的好数个数&#xff0c;对于\(k1,k2…

从机器码到面向对象

1.从机器码到面向对象 本章节主要探讨是什么驱动着编程从机器码发展到了汇编语言&#xff0c;又从汇编语言发展到了面向过程编程&#xff0c;最后从面向过程编程发展到面向对象编程。通过这些探讨最终明确多年来的软件工程发展我们都解决了哪些棘手的问题。 1.1机器码 在真正…

【MySQL】JavaWeb项目中配置数据库的连接池

在META-INF目录下新建context.xml <?xml version"1.0" encoding"UTF-8"?> <Context><Resource name"jdbc/TestDB" auth"Container" type"javax.sql.DataSource"maxActive"10" maxIdle"4&qu…

面向对象那么好,为什么贫血模型如此流行?

2.面向对象那么好&#xff0c;为什么贫血模型如此流行&#xff1f; 2.1我们身边真的没有面向对象吗&#xff1f; 我们总是在强调我们的身边都是贫血模型&#xff0c;但是当我们仔细观察我们所引用的jar包时&#xff0c;我们会惊讶地发现&#xff0c;原来面向对象开发一直在我…

spfa_队列

spfa:1.当给定的图存在负权边时&#xff0c;Dijkstra等算法便没有了用武之地&#xff0c;而Bellman-Ford算法的复杂度又过高&#xff0c;SPFA算法便派上用场了.2.我们约定有向加权图G不存在负权回路&#xff0c;即最短路径一定存在3.思路&#xff1a;用数组d记录每个结点的最短…

Tomcat配置解析

Tomcat文件配置 tomcat解压后目录 bin&#xff1a;可执行文件&#xff08;startup.bat shutdown.bat) conf&#xff1a;配置文件&#xff08;server.xml&#xff09; lib&#xff1a;tomcat依赖的jar文件 log&#xff1a;日志文件&#xff08;记录出错等信息&#xff09; temp&…

教你配置安全的ProFTPD服务器(中)

二、 基本加固ProFTPD服务器步骤 1.升级版本 注&#xff1a;如果当前版本已经是最新版本&#xff0c;可以跳过第一步。 升级陈旧的ProFTPD版本&#xff0c;因为早期的ProFTPD版本存在的安全漏洞。对于一个新配置的ProFTPD服务器来说使用最新稳定版本是最明智的选择&#xff0c;…

前端动画 wow.js 效果

让花里胡哨的特效变简单 wow.js动画class介绍 引入css样式以及js插件 <link rel"stylesheet" type"text/css" href"./css/animate.min.css"><script src"./js/wow.min.js"></script><script> new WOW().init(…

Clob类型转换为String

SQL CLOB 是内置类型&#xff0c;它将字符大对象存储为数据库表某一行中的一个列值&#xff0c;使用CHAR来存储数据&#xff0c;如XML文档。 如下是一个Clob转换为String的静态方法&#xff0c;可将其放在自己常用的工具类中&#xff0c;想直接用的话&#xff0c;自己稍作修改即…

Java 将Word转为PDF、PNG、SVG、RTF、XPS、TXT、XML

同一文档在不同的编译或阅读环境中&#xff0c;需要使用特定的文档格式来打开&#xff0c;通常需要通过转换文档格式的方式来实现。下面将介绍在Java程序中如何来转换Word文档为其他几种常见文档格式&#xff0c;如PDF、图片png、svg、xps、rtf、txt、xml等。 使用工具&#xf…