AI时代带来的图片造假危机,该如何解决

一、前言

当今,图片造假问题非常泛滥,已经成为现代社会中一个严峻的问题。随着AI技术不断的发展,人们可以轻松地通过图像编辑和AI智能生成来篡改和伪造图片,使其看起来真实而难以辨别,之前就看到过一对硕士夫妻为了骗保竟篡改结婚证、离婚证等信息:

甚至诺贝尔奖获奖者发表的论文中也疑似进行了图像篡改的行为:

这给社会带来了许多负面影响,尤其是在保险、金融、银行等领域,如果将虚假篡改过的信息资料审核通过更是会带来巨大的影响甚至是经济上的损失。

而且在当今AI快速发展的背景下,图像篡改的技术门槛越来越低,效果也越来越逼真。

所以,研究和开发图像篡改和伪造检测技术变得至关重要,推出一种能高效准确的检测出图像造假的方法或工具是迫在眉睫的!

刚好在最近的WAIC2023大会上,合合信息在图像篡改检测、AI图像安全领域上分享了他们的三种策略:图像篡改检测、AIGC判别、OCR对抗攻击技术:

让我们来看看他们是如何解决这些问题的。

二、会议分享

1)图像篡改检测

早在去年的世界人工智能大会上,合合信息”PS篡改检测”技术首次亮相,“像素级”起底修改痕迹,覆盖身份证、护照等多种证照识别类目,吸引了社会各界关注。我也使用过他们提供的PS检测服务来检测身份证伪造的情况,效果也是非常不错的,能够准确的识别出被篡改的部分:

今年合合信息团队对图像篡改检测“黑科技”持续优化升级,应用面也拓展至“截图篡改检测”,此前,图像篡改检测的技术研究对象主要集中于自然场景图像,然而,真正为人们的生活带来风险的通常是被篡改的资质证书、文档、截图等。现在合合信息的AI篡改检测技术还能够对包括转账记录、交易记录、聊天记录等多种截图,无论是从原图中“抠下”关键要素后移动“粘贴”至另一处的“复制移动”图片篡改手段,还是“擦除”、“重打印”等方式,图像篡改检测技术均可“慧眼”识假:

截图防伪检测对于证照检测来讲是更困难的,因为截图的背景没有纹路和底色,整个截图没有光照差异。证件篡改识别尚可通过拍照时产生的成像差异进行篡改痕迹判断,而截图则没有这些“信息”。现有的视觉模型通常难以充分发掘原始图像和篡改图像的细粒度差异特征,因此难以实现令人满意的准确率。为此,合合信息提出了一种基于HRNet的编码器-解码器结构的图像真实性鉴别模型,结合图像本身的信息包括但不限于噪声、频谱等, 从而捕捉到细粒度的视觉差异,达到高精度鉴别目的:

2)生成式图像鉴别

除此之外,合合信息在生成式图像鉴别方面也有所建树

在去年底的时候,我就体验过AIGC的强大,给予AI一段描述,短短几十秒就能生成出与之匹配的画作出来,下图为我使用某平台的AIGC产品生成的画作(描述文字内容为:森林里的蘑菇房子,梦幻仙境、蘑菇花草):

可以看到效果还是非常不错的,符合描述内容。

可是,随着AIGC的爆火后,不少人将它用于灰色或者违法产业,通过AI去生成不符合版权、违规的图片非法获利、混淆视听。严重危害了广大群众的财产,甚至是社会稳定:

庆幸的是,合合信息研发了AI生成图片鉴别技术,用于帮助个人及机构识别判断AI图片是否为生成的,防止“虚拟人”欺诈,通过解决生成式AI面临的部分伦理问题,助力生成式AI的健康发展:

合合信息基于空域与频域关系建模,输入图片后,模型通过多个空间注意力头来关注空间特征,并使用纹理增强模块放大浅层特征中的细微伪影,增强模型对真实人脸和伪造人脸的感知与判断准确度。能够在不用穷举图片的情况下,利用多维度特征来分辨真实图片和生成式图片的细微差异,解决了生成出来的图像场景繁多,不能穷举、有些生成图和真实图片的相似度过高,难以判别的两大难点。

该项技术的出现,在反诈骗、版权保护等领域的应用空间十分广泛。例如在金融行业,不法分子可利用AI合成技术对线上资金进行盗刷,威胁公民财产安全。本项技术可通过对支付环节的干预,降低资金盗刷概率;在传媒行业,某些图片供给方使用软件自动生成海报等图片,故意隐瞒其来源并售卖给第三方,第三方在不知情的情况下进行商用,导致了侵权问题,相关检测技术可在一定程度上解决这些问题。

3)OCR对抗攻击技术

相信大家在日常生活中,出于工作或其他业务的需要几乎都会遇到拍摄自己的证件照发送给第三方的情况,这些图片上承载的个人信息通常都是个人隐私,除了第三方和自己外不希望被别人获取。一但被别有用心的不法分子使用OCR技术识别提取并泄露,那会造成比较大的损失,比如新闻上经常看到的,身份信息被拿来搞电信诈骗,后面追责下来把自己送进监狱了,简直是无妄之灾!

市面上也有此类的对抗攻击技术来避免这样情况的出现,比如通过下面四种方式对图像进行加密,避免OCR的识别:

  1. 图像干扰:攻击者通过添加噪声、模糊化、旋转、变形等操作来干扰OCR系统对图像的识别。为了对抗这种攻击,OCR系统需要通过图像增强、边缘检测等技术来提高对图像的处理能力。

  2. 文字扰乱:攻击者通过在文本中插入其他字符、修改字符间距、改变字体等方式来扰乱OCR系统对文字的识别。为了对抗这种攻击,OCR系统需要通过设计更加鲁棒的字体和字符匹配算法。

  3. 对抗生成网络(GAN):对抗生成网络是一种通过训练生成器和判别器来同时提高生成样本的质量和判别样本真伪的技术。攻击者可以使用GAN生成看似真实但对OCR系统产生干扰的图像。为了对抗这种攻击,OCR系统需要通过对抗性训练、加入额外的鉴别器等方法提高对伪造图像的检测能力。

  4. 对抗样本生成:攻击者可以通过添加特定的噪声或干扰来改变图像,使得OCR系统产生错误的识别结果。为了对抗这种攻击,OCR系统需要采用强大的对抗样本检测算法,以便及时识别并拒绝对抗样本。

合合信息在此基础上也做了进行了创新技术探索,研发了OCR对抗攻击技术来进行文档图片“加密”,以防止不法分子使用OCR技术识别和提取其中的个人信息,该技术可在不影响肉眼观看与判断的情况下,对场景文本或者文档内文本进行扰动,对包含中文、英文、数字等关键信息的内容进行“攻击”,防止第三方通过OCR系统读取并保存图像中所有的文字内容,降低数据泄露的风险,以此达到保护信息的目的:

三、总结

通过AI,可以制作虚假的图片和新闻报道、以此破坏媒体的可信度和新闻的真实性。这可能导致公众对媒体和新闻的信任度下降,影响舆论和社会稳定。毫不夸张的说,AI造假技术对媒体、法律、政治、娱乐、社交媒体和个人安全等多个行业都会带来巨大的影响。

所以,检测这些造假信息的研究和开发对于保护社会安全和维护公正正义具有重要意义。合合信息AI图像内容检测产品的出现,在保护图像真实性和识别文本方面发挥了重要的作用。 通过自动化、高准确性和多样化的检测功能,这些技术能够帮助用户检测和防御图像篡改、生成式图像欺骗和OCR对抗攻击等问题。然而,我们仍然需要不断努力和创新,以应对不断变化和复杂化的篡改和伪造手段。只有这样,我们才能够更好地应对图像篡改和伪造问题,维护社会的稳定和公正。

值得高兴的是,中国信通院已牵头启动了《文档图像篡改检测标准》制定工作,该项标准由中国信通院牵头,上海合合信息科技股份有限公司、中国图象图形学学会、中国科学技术大学等科技创新企业及知名学术机构联合编制。以期为文档图像内容安全提供可靠保障,助力新时代AI安全体系建设。基于产业现状,围绕“细粒度”视觉差异伪造图像鉴别、生成式图像判别、文档图像完整性保护等行业焦点议题,凝聚行业共识,以期为行业提供有效指引,挖掘文档图像篡改检测技术趋势,助力图像产业健康成长。

相信随着该项标准的制定以及这么多顶尖企业的努力,将会为该行业注入更多的安全感和稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5598.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink-端到端精确一次(End-To-End Exactly-Once)

1.总结 目的:想要在故障恢复后不丢数据 输入端 保证可以重复发送数据如果是kafka,Flink负责维护offset,不用kafka维护设置kafka的隔离级别为:读已提交flink 开启检查点采用对齐或者不对齐的精确一次输出端 kafka 幂等事务两阶段…

一文了解Python中的while循环语句

目录 🥩循环语句是什么 🥩while循环 🥩遍历猜数字 🥩while循环嵌套 🥩while循环嵌套案例 🦐博客主页:大虾好吃吗的博客 🦐专栏地址:Python从入门到精通专栏 循环语句是什…

Mysql表锁与行锁

Mysql锁实战 前言:什么是锁一:全局锁1.1 概念1.2 作用1.3 使用1.4 特点 二:表级锁2.1 概念2.2 分类2.2.1 表锁2.2.2 元数据锁 MDL2.2.3 意向锁 三:行级锁3.1 行锁(Record Lock)3.2 间隙锁(Gap Lock)3.3 临键锁(Next-Key Lock): 四…

C# 委托详解

一.委托的概念 C#中委托也叫代理,委托提供了后期绑定机制(官方解释),功能类似于C中的函数指针,它存储的就是一系列具有相同签名和返回类型的方法的地址,调用委托的时候,它所包含的所有方法都会被执行。 二.委托的用法…

自然语言处理基础详解入门

1、自然语言的概念 自然语言是指人类社会约定俗成的,并且区别于人工语言(如计算机程序)的语言,,是自然而然的随着人类社会发展演变而来的语言,它是人类学习生活的重要工具。 2、自然语言处理概述 自然语言…

Redis【实践篇】之RedisTemplate基本操作

Redis 从入门到精通【应用篇】之RedisTemplate详解 文章目录 Redis 从入门到精通【应用篇】之RedisTemplate详解0. 前言1. RedisTemplate 方法1. 设置RedisTemplate的序列化方式2. RedisTemplate的基本操作 2. 源码浅析2.1. 构造方法2.2. 序列化方式2.3. RedisTemplate的操作方…

【数据可视化】基于Python和Echarts的中国经济发展与人口变化可视化大屏

1.题目要求 本次课程设计要求使用Python和ECharts实现数据可视化大屏。要求每个人的数据集不同,用ECharts制作Dashboard(总共至少4图),要求输入查询项(地点和时间)可查询数据,查询的数据的地理…

Stable Diffusion如何生成高质量的图-prompt写法介绍

文章目录 Stable Diffusion使用尝试下效果prompt的编写技巧prompt 和 negative promptPrompt格式Prompt规则细节优化Guidance Scale 总结 Stable Diffusion Stable Diffusion是一个开源的图像生成AI系统,由Anthropic公司开发。它基于 Transformer模型架构,可以通过文字描述生成…

Asp.net Core配置CORS 跨域无效(记录一下)

问题 学习老杨的英语网站项目,运行项目时,发现出现了跨域的问题。 然后自己建一项目,进行配置,测试,发现配置CORS 跨域时,发现跨域的配置无效,依旧报错。 解决 网上找了一天,然后…

USG6000v防火墙的基本使用:制定安全策略让不同安全区域的设备进行访问

目录 一、首先配置环境: 二、实验拓扑及说明 拓扑: PC1和PC2配置ip地址:​编辑​编辑 r4路由器配置ip: 进行防火墙的设置: 1、创建trust1区域和untrust1区域 2、制定防火墙的策略: 3、为防火墙增加可以…

hive常用函数

行列转换 create table tmp_summer1(id string,name string brith string);insert into tmp_summer1 values(001,A,20211202); insert into tmp_summer1 values(001,B,20211202); insert into tmp_summer1 values(002,A,20211202); insert into tmp_summer1 values(001,B,20211…

unity进阶--json的使用学习笔记

文章目录 unity自带的json使用方法第三方--LitJson的使用第一种使用方式第二种--使用jsonData unity自带的json使用方法 创建数据类 转化成json 解析json 第三方–LitJson的使用 第一种使用方式 数据类 创建和解析 第二种–使用jsonData 创建 解析

R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套…

CentOS7系统MBR、GRUB2、内核启动流程报错问题

目录 🥩Linux启动流程 🥩MBR修复 🍭1、模拟损坏 🍭2、重启测试 🍭3、修复MBR 🍭4、测试系统 🥩GRUB2修复 🍭1、模拟损坏 🍭2、修复GRUB2 🍭3、测试系统 &…

vue中export和export default的使用

<script> export default {name: HelloWorld } $(function () {alert(引入成功) }) </script> 1、export的使用 比喻index.js要使用test.js中的数据&#xff0c;首先在test.js文件中进行导出操作 代码如下&#xff1a; export function list() {alert("list…

Rust vs Go:常用语法对比(四)

题图来自 Go vs. Rust performance comparison: The basics 61. Get current date 获取当前时间 package mainimport ( "fmt" "time")func main() { d : time.Now() fmt.Println("Now is", d) // The Playground has a special sandbox, so you …

多目标灰狼算法(MOGWO)的Matlab代码详细注释及难点解释

目录 一、外部种群Archive机制 二、领导者选择机制 三、多目标灰狼算法运行步骤 四、MOGWO的Matlab部分代码详细注释 五、MOGWO算法难点解释 5.1 网格与膨胀因子 5.2 轮盘赌方法选择每个超立方体概率 为了将灰狼算法应用于多目标优化问题,在灰狼算法中引入外部种群Archi…

Vue第六篇:电商网站图片放大镜功能

本文参考&#xff1a;https://blog.csdn.net/liushi21/article/details/127497487 效果如下&#xff1a; 功能实现分解如下&#xff1a; &#xff08;1&#xff09;商品图区域&#xff1a;主要是浏览图片&#xff0c;根据图片的url显示图片。当鼠标离开此区域时"放大镜区…

ES6解构对象、数组、函数传参

目录 1.对象解构 2.对象解构的细节处理 2.1.解构的值对象中不存在时 2.2.给予解构值默认参数 2.3.非同名属性解构 3.数组解构 3.1基础解构语法 3.2数组嵌套解构 4.函数解构传参 5.解构小练习 在ES6的新语法中新增了解构的方法&#xff0c;它可以让我们很方便的从数组或…

每天五分钟机器学习:多项式非线性回归模型

本文重点 在前面的课程中,我们学习了线性回归模型和非线性回归模型的区别和联系。多项式非线性回归模型是一种用于拟合非线性数据的回归模型。与线性回归模型不同,多项式非线性回归模型可以通过增加多项式的次数来适应更复杂的数据模式。在本文中,我们将介绍多项式非线性回…