1.总结
目的:想要在故障恢复后不丢数据
- 输入端
- 保证可以重复发送数据
- 如果是kafka,Flink负责维护offset,不用kafka维护
- 设置kafka的隔离级别为:读已提交
- flink
- 开启检查点
- 采用对齐或者不对齐的精确一次
- 输出端
- kafka
- 幂等+事务
- 两阶段提交(2pc)
- hbase
- 幂等,因为有put操作
- doris
- 两阶段提交(2pc)
- kafka
实际应用中,最难做到、也最希望做到的一致性语义,无疑就是端到端(end-to-end)的“精确一次”。我们知道,对于Flink内部来说,检查点机制可以保证故障恢复后数据不丢(在能够重放的前提下),并且只处理一次,所以已经可以做到exactly-once的一致性语义了。
所以端到端一致性的关键点,就在于输入的数据源端和输出的外部存储端。
2.输入端保证
输入端主要指的就是Flink读取的外部数据源。对于一些数据源来说,并不提供数据的缓冲或是持久化保存,数据被消费之后就彻底不存在了,例如socket文本流。对于这样的数据源,故障后我们即使通过检查点恢复之前的状态,可保存检查点之后到发生故障期间的数据已经不能重发了,这就会导致数据丢失。所以就只能保证at-most-once的一致性语义,相当于没有保证。
想要在故障恢复后不丢数据,外部数据源就必须拥有重放数据的能力。常见的做法就是对数据进行持久化保存,并且可以重设数据的读取位置。一个最经典的应用就是Kafka。在Flink的Source任务中将数据读取的偏移量保存为状态,这样就可以在故障恢复时从检查点中读取出来,对数据源重置偏移量,重新获取数据。
数据源可重放数据,或者说可重置读取数据偏移量,加上Flink的Source算子将偏移量作为状态保存进检查点,就可以保证数据不丢。这是达到at-least-once一致性语义的基本要求,当然也是实现端到端exactly-once的基本要求。
3.输出端保证
有了Flink的检查点机制,以及可重放数据的外部数据源,我们已经能做到at-least-once了。但是想要实现exactly-once却有更大的困难:数据有可能重复写入外部系统。
因为检查点保存之后,继续到来的数据也会一一处理,任务的状态也会更新,最终通过Sink任务将计算结果输出到外部系统;只是状态改变还没有存到下一个检查点中。这时如果出现故障,这些数据都会重新来一遍,就计算了两次。我们知道对Flink内部状态来说,重复计算的动作是没有影响的,因为状态已经回滚,最终改变只会发生一次;但对于外部系统来说,已经写入的结果就是泼出去的水,已经无法收回了,再次执行写入就会把同一个数据写入两次。
所以这时,我们只保证了端到端的at-least-once语义。
为了实现端到端exactly-once,我们还需要对外部存储系统、以及Sink连接器有额外的要求。能够保证exactly-once一致性的写入方式有两种:
- 幂等写入
- 事务写入
我们需要外部存储系统对这两种写入方式的支持,而Flink也为提供了一些Sink连接器接口。接下来我们进行展开讲解。