手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

目录

手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

前提条件

设置学习率

学习率的主流优化算法


手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

我们明确了分类任务的损失函数(优化目标)的相关概念和实现方法,本节我们依旧横向展开"横纵式"教学法,如 图1 所示,本节主要探讨在手写数字识别任务中,使得损失达到最小的参数取值的实现方法。

图1:“横纵式”教学法 — 优化算法



前提条件

在优化算法之前,需要进行数据处理、设计神经网络结构,代码与上一节保持一致,如下所示。

# 加载相关库
import os
import random
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json# 定义数据集读取器
def load_data(mode='train'):# 读取数据文件datafile = './work/mnist.json.gz'print('loading mnist dataset from {} ......'.format(datafile))data = json.load(gzip.open(datafile))# 读取数据集中的训练集,验证集和测试集train_set, val_set, eval_set = data# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLSIMG_ROWS = 28IMG_COLS = 28# 根据输入mode参数决定使用训练集,验证集还是测试if mode == 'train':imgs = train_set[0]labels = train_set[1]elif mode == 'valid':imgs = val_set[0]labels = val_set[1]elif mode == 'eval':imgs = eval_set[0]labels = eval_set[1]# 获得所有图像的数量imgs_length = len(imgs)# 验证图像数量和标签数量是否一致assert len(imgs) == len(labels), \"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))index_list = list(range(imgs_length))# 读入数据时用到的batchsizeBATCHSIZE = 100# 定义数据生成器def data_generator():# 训练模式下,打乱训练数据if mode == 'train':random.shuffle(index_list)imgs_list = []labels_list = []# 按照索引读取数据for i in index_list:# 读取图像和标签,转换其尺寸和类型img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')label = np.reshape(labels[i], [1]).astype('int64')imgs_list.append(img) labels_list.append(label)# 如果当前数据缓存达到了batch size,就返回一个批次数据if len(imgs_list) == BATCHSIZE:yield np.array(imgs_list), np.array(labels_list)# 清空数据缓存列表imgs_list = []labels_list = []# 如果剩余数据的数目小于BATCHSIZE,# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batchif len(imgs_list) > 0:yield np.array(imgs_list), np.array(labels_list)return data_generator# 定义模型结构
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是10self.fc = Linear(in_features=980, out_features=10)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层激活函数使用softmaxdef forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

设置学习率

在深度学习神经网络模型中,通常使用标准的随机梯度下降算法更新参数,学习率代表参数更新幅度的大小,即步长。当学习率最优时,模型的有效容量最大,最终能达到的效果最好。学习率和深度学习任务类型有关,合适的学习率往往需要大量的实验和调参经验。探索学习率最优值时需要注意如下两点:

  • 学习率不是越小越好。学习率越小,损失函数的变化速度越慢,意味着我们需要花费更长的时间进行收敛,如 图2 左图所示。
  • 学习率不是越大越好。只根据总样本集中的一个批次计算梯度,抽样误差会导致计算出的梯度不是全局最优的方向,且存在波动。在接近最优解时,过大的学习率会导致参数在最优解附近震荡,损失难以收敛,如 图2 右图所示。


图2: 不同学习率(步长过大/过小)的示意图
 

在训练前,我们往往不清楚一个特定问题设置成怎样的学习率是合理的,因此在训练时可以尝试调小或调大,通过观察Loss下降的情况判断合理的学习率,设置学习率的代码如下所示。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#设置不同初始学习率opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 10for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

学习率的主流优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 图3 所示。


图3: 不同学习率算法效果示意图
 

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。

  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。

每个批次的数据含有抽样误差,导致梯度更新的方向波动较大。如果我们引入物理动量的概念,给梯度下降的过程加入一定的“惯性”累积,就可以减少更新路径上的震荡,即每次更新的梯度由“历史多次梯度的累积方向”和“当次梯度”加权相加得到。历史多次梯度的累积方向往往是从全局视角更正确的方向,这与“惯性”的物理概念很像,也是为何其起名为“Momentum”的原因。类似不同品牌和材质的篮球有一定的重量差别,街头篮球队中的投手(擅长中远距离投篮)喜欢稍重篮球的比例较高。一个很重要的原因是,重的篮球惯性大,更不容易受到手势的小幅变形或风吹的影响。

  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。

通过调整学习率的实验可以发现:当某个参数的现值距离最优解较远时(表现为梯度的绝对值较大),我们期望参数更新的步长大一些,以便更快收敛到最优解。当某个参数的现值距离最优解较近时(表现为梯度的绝对值较小),我们期望参数的更新步长小一些,以便更精细的逼近最优解。类似于打高尔夫球,专业运动员第一杆开球时,通常会大力打一个远球,让球尽量落在洞口附近。当第二杆面对离洞口较近的球时,他会更轻柔而细致的推杆,避免将球打飞。与此类似,参数更新的步长应该随着优化过程逐渐减少,减少的程度与当前梯度的大小有关。根据这个思想编写的优化算法称为“AdaGrad”,Ada是Adaptive的缩写,表示“适应环境而变化”的意思。RMSProp是在AdaGrad基础上的改进,学习率随着梯度变化而适应,解决AdaGrad学习率急剧下降的问题。

  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

说明:

每种优化算法均有更多的参数设置。理论最合理的未必在具体案例中最有效,所以模型调参是很有必要的,最优的模型配置往往是在一定“理论”和“经验”的指导下实验出来的。


我们可以尝试选择不同的优化算法训练模型,观察训练时间和损失变化的情况,代码实现如下。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#四种优化算法的设置方案,可以逐一尝试效果opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters())# opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 3for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55496.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter Cannot run with sound null safety, because the following dependencies

flutter sdk 版本升级到2.0或者更高的版本后,运行之前的代码会报错 Error: Cannot run with sound null safety, because the following dependencies dont support null safety:- package:flutter_swiper- package:flutter_page_indicator- package:transformer_p…

微服务中间件--统一网关Gateway

统一网关Gateway 8.统一网关Gatewaya.搭建网关服务b.路由断言工厂c.路由过滤器GatewayFilterd.全局过滤器GlobalFiltere.过滤器的执行顺序f.网关的cors跨域配置 8.统一网关Gateway 网关功能: 身份认证和权限校验服务路由、负载均衡请求限流 网关的技术实现 在Spr…

VUE笔记(三)vue的语法

一、计算属性 1、计算属性的概念 计算属性是依赖于源数据(data或者属性中的数据),在元数据的基础上进行逻辑运算后得到的新的数据,计算属性要依赖于源数据,源数据数据变化计算属性也会变化 2、计算属性的语法 在vue2中使用computed这个选…

threejs纹理加载三(视频加载)

threejs中除了能把图片作为纹理进行几何体贴图以外,还可以把视频作为纹理进行贴图设置。纹理的类型有很多,我们可以用不同的加载器来加载,而对于视频作为纹理,我们需要用到今天的主角:VideoTexture。我们先看效果&…

Nacos安装指南

Nacos安装指南 1.Windows安装 开发阶段采用单机安装即可。 1.1.下载安装包 在Nacos的GitHub页面,提供有下载链接,可以下载编译好的Nacos服务端或者源代码: GitHub主页:https://github.com/alibaba/nacos GitHub的Release下载…

FxFactory 8 Pro Mac 苹果电脑版 fcpx/ae/motion视觉特效软件包

FxFactory pro for mac是应用在Mac上的fcpx/ae/pr视觉特效插件包,包含了成百上千的视觉效果,打包了很多插件,如调色插件,转场插件,视觉插件,特效插件,文字插件,音频插件,…

java八股文面试[多线程]——什么是守护线程

知识来源: 【2023年面试】什么是守护线程_哔哩哔哩_bilibili

Android JNI系列详解之ndk编译工具环境变量配置

一、前提 之前是只介绍了CMake编译工具的使用,现在介绍另一种原生(NDK自带的脚本工具)自带的编译方式:ndk-build,想要使用ndk-build编译工程,我们需要配置全局的环境变量。 二、配置环境变量 找到ndk在电脑…

《Zookeeper》源码分析(二十三)之 客户端的命令处理过程

目录 客户端的命令处理过程1. ZooKeeper.create()2. ClientCnxn.submitRequest()3. SendThread.run()4. ClientCnxnSocket.doTransport()5. SendThread.readResponse() 客户端的命令处理过程 以创建节点命令为例,整个过程流程如下: CliCommand命令在抽…

AcWing 2058. 笨拙的手指(每日一题)

大家好 我是寸铁 如果你觉得这篇题解对你有用,可以动动手点个赞或关注,谢谢~ 题目描述 输入的第一串字母,存在一位错误。 输入的第二串字母,存在一位错误。 答案保证唯一解 我们需要去枚举每一位,找到二进制和三进制…

腾讯云服务器搭建网站详细教程_2023更新

使用腾讯云服务器搭建网站全流程,包括轻量应用服务器和云服务器CVM建站教程,轻量可以使用应用镜像一键建站,云服务器CVM可以通过安装宝塔面板的方式来搭建网站,腾讯云服务器网分享使用腾讯云服务器建站教程,新手站长搭…

Linux内核学习(九)—— 虚拟文件系统(基于Linux 2.6内核)

虚拟文件系统(VFS)作为内核子系统,为用户空间程序提供了文件和文件系统相关的接口。通过虚拟文件系统,程序可以利用标准的 Unix 系统调用对不同的文件系统(甚至不同介质上的文件系统)进行读写操作。 一、通…

go语言中的切片

切片底层 切片(Slice)是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。 切片是一个引用类型,它的内部结构包含地址、长度和容量。切片一般用于快速地操作一块数据集合。 切片…

7.elasticsearch同步工具-logstah

1.logstah Logstash 是一个用于数据处理和转换的开源工具,它可以将来自不同源头的数据收集、转换、过滤,并将其发送到不同的目标。Logstash 是 ELK(Elasticsearch、Logstash 和 Kibana)技术栈的一部分,通常与 Elastics…

VUE笔记(四)vue的组件

一、组件的介绍 1、组件的作用 整个项目都是由组件组成 可以让代码复用:相似结构代码可以做成一个组件,直接进行调用就可以使用,提高代码复用性 可以让代码具有可维护性(只要改一处,整个引用的部分全部都变&#xf…

构建与应用大数据环境:从搭建到开发与组件使用的全面指南

文章目录 环境搭建开发与组件使用性能优化与监控安全与隐私总结 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏:大数据系列 ✨文章内容: 🤝希望作者…

求解整数规划问题的割平面法和分支定界法

文章目录 整数规划割平面法分支定界法代码实现 整数规划 整数规划问题是优化变量必须取整数值的线性或非线性规划问题,不过,在大多数情况下,整数规划问题指的是整数线性规划问题。 其数学模型为 m i n f ( x ) c T x s.t A x b x ≥ 0 x…

【Gitee提交pr】

Gitee提交pr 什么是pr怎样提交一个pr嘞? 什么是pr pr:指的是将自己的修改从自己的账号仓库dev下提交到官方账号仓库master下; 通俗来讲就是Gitee线上有属于自己的分支,然后本地在自己地分支修改完代码之后,提交到自己的线上分支&a…

多线程和并发(1)—等待/通知模型

一、进程通信和进程同步 1.进程通信的方法 同一台计算机的进程通信称为IPC(Inter-process communication),不同计 算机之间的进程通信被称为 RPC(Romote process communication),需要通过网络,并遵守共同的协议。**进…

Redis—Redis介绍(是什么/为什么快/为什么做MySQL缓存等)

一、Redis是什么 Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、…