对经典算法的问题的回顾与感想
对八皇后问题和八数码问题分别用最陡上升爬山法、首选爬山法、随机重启爬山法、模拟退火算法来实现,并且分析他们的性能。
分析
要求实现的各个算法是有共同点的,比如,八皇后问题相关算法拥有相同的状态空间,每个算法都有从当前状态获取下一状态的需求,各个算法细节不同,共同点是,它们都是算法。
基于这样的想法,我们可以将代码划分为3层:
运行示例
代码比较长,附在最后面,读者基于上述的思路是不难看懂的。
我们默认读者已经知道这几个算法的思路,代码直接给出实现。如果不懂,请翻阅人工智能课本,里面有讲。
图1,八数码问题的交互界面
图2,八皇后问题的交互界面
图3 输出界面示例
结果分析
为了便于研究,我们首先定义三个指标,分别是:
①因变1:算法找到解的成功率;
②因变2:算法找到的解的平均路径长度
③因变3:算法找到解的平均耗散,用搜索的结点数衡量
对八皇后的结果分析
观察表1,我们可以发现如下对八皇后问题的有趣结论:
(1)在八皇后问题中,当随机测例数增加,最陡上升爬山法和首选爬山法的成功率都收敛到0.142左右,与书本结论吻合。
(2)最陡上升爬山法的解的平均路径长度收敛到0.58左右,而首选爬山是0.83左右。这说明最陡爬山法的平均走了更短的路径到达全局最优解。
(3)虽然最陡上山法的平均路径长度更短,但是搜索耗散却比首选爬山法多,原因是,为了得到最陡的子结点,需要探查所有的相邻子节点。反应在数据上是,最陡上山法的解的平均耗散率收敛到32左右,而首选爬山法仅为19左右。
(4)随机重启爬山法比最陡上升法和首选爬山法的成功率兜大大提高,重启次数为5,随机测例10000时,成功率高达0.6,约为前二者算法的4倍。但是也付出了更大的代价,平均解长度是最陡上升法的18.4倍,是首选爬山法的12.7倍;解的平均耗散度是最陡爬山法的17倍,是首选爬山法的28.4倍。
(5)随机重启爬山法的成功率随初始温度的增加而上升。当重启次数为0时,退化为首选爬山法,成功率、解长度、解耗散度都和首选爬山法接近。随着重启次数增加,成功率也大大上升,当重启次数为7时,成功率为0.7092,是重启次数为0的4.96倍,相应地,解长度和解耗散也大大增加。
(6)模拟退火算法随起始温度上升,成功率也上升。理论上分析,当起始温度足够高,退火过程足够长的时候,成功率可以接近1。但是其开销也会变得极大,0.43成功率的退火算法的解长度是0.46成功率退火算法的3706倍,而解耗散是146.5倍。
对八数码问题的结果分析
观察表2,我们可以发现如下对八数码问题的有趣结论:
(1)与八皇后问题类似,最陡上升和首选爬山法收敛到了接近的成功率,此处是0.4左右。但是解长度和解耗散并没有八皇后问题大,可能的原因是,八数码问题的相邻子结点空间远比八皇后问题大。
(2)这里没有使用随机重启算法,因为八数码问题关心解路径,如果使用了随机重启算法,则违反了规则。
(3)初始状态是通过目标随机打乱得来的,先随机取上限次数一下的打乱数x,然后随机方向移动白块x次。我们发现,打乱步数上限的多少,对成功率的影响并不大,无论最陡爬山算法,首选爬山算法,模拟退火算法都如此。可能的原因是,在打乱次数上限很小的时候,成功率就已经收敛了。
(4)模拟退火算法在八数码问题和八皇后问题的表现类似。都随着初始温度的上升而上升,同时解长度和解耗散急剧增大。理论上,当初始温度足够高,成功率会逼近1。
代码
由于实在太多,我就不逐行解释。读者把握分析时的思路,应该不难读懂。
//*****************************************************
// eightQueue.hpp
// 包括八皇后问题的eightQueueNode类和eightQueueNodeFactory的实现
//*****************************************************
#include <iostream>
#include <stdlib.h>
#include <time.h> class eightQueueNode {
public:int arr[8];eightQueueNode(int a,int b, int c, int d, int e, int f, int g, int h){arr[0] = a;arr[1] = b;arr[2] = c;arr[3] = d;arr[4] = e;arr[5] = f;arr[6] = g;arr[7] = h;}eightQueueNode(const eightQueueNode& node) {arr[0] = node.arr[0];arr[1] = node.arr[1];arr[2] = node.arr[2];arr[3] = node.arr[3];arr[4] = node.arr[4];arr[5] = node.arr[5];arr[6] = node.arr[6];arr[7] = node.arr[7];}~eightQueueNode(){}bool operator==(const eightQueueNode& node) {return (this->arr[0] == node.arr[0]) && (this->arr[1] == node.arr[1]) && (this->arr[2] == node.arr[2])&& (this->arr[3] == node.arr[3]) && (this->arr[4] == node.arr[4]) && (this->arr[5] == node.arr[5])&& (this->arr[6] == node.arr[6]) && (this->arr[7] == node.arr[7]);}
};class eightQueueNodeFactory{private:int ranNum(){return rand() % 8;}bool isTheArrayAllTrue(bool isAllCheck[64]) {for(int i = 0; i < 64; i++) {if(isAllCheck[i] == false) {return false;}}return true;}public:eightQueueNodeFactory(){srand((unsigned)time(NULL));}eightQueueNode getARandomNode() {return eightQueueNode(ranNum(),ranNum(),ranNum(),ranNum(),ranNum(),ranNum(),ranNum(),ranNum());}int evaluate(const eightQueueNode& node) {int numOfAttack = 0;for(int i = 0; i < 7; i++) {for(int j = i + 1; j < 8; j++) {if (node.arr[i] == node.arr[j] || (node.arr[i]-node.arr[j]) == (i-j) || (node.arr[i]-node.arr[j]) == (j-i)) {numOfAttack++;}}}return numOfAttack;}int getBestNextNode(eightQueueNode& node) {eightQueueNode ans = node;eightQueueNode tmp = node;int costOfSearch = 0;for(int i = 0; i < 64; i++) {tmp = node;tmp.arr[i/8] = i % 8;if(evaluate(tmp) < evaluate(ans)) {ans = tmp;} else if(evaluate(tmp) == evaluate(ans)) {if(rand() / double(RAND_MAX) > 0.5) {ans = tmp;}}}node = ans;return 56;}// the input node is confirmed to be not the bestint getNextBetterNode(eightQueueNode& node) {bool isAllCheck[64];for(int i = 0; i < 64; i++) isAllCheck[i] = false;eightQueueNode tmp = node;int costOfSearch = 1;while(evaluate(tmp) >= evaluate(node)) {// 子节点全部搜索过,都比当前差if(isTheArrayAllTrue(isAllCheck)) return costOfSearch;// 初始化,找下一邻居tmp = node;int a = rand() % 64;isAllCheck[a] = true;tmp.arr[a/8] = a % 8;costOfSearch++;if(tmp == node) {continue;}}node = tmp;return costOfSearch;}int getARandomNeighbour(eightQueueNode& node) {eightQueueNode tmp = node;int cost = 0;while(node == tmp) {cost++;int a = rand() % 64;tmp.arr[a/8] = a % 8;}node = tmp;return cost;}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
//***************************************
// eightQueueRunner.cpp
// 包括八皇后问题的各个算法和简单交互界面实现
//***************************************
#include "eightQueue.hpp"
#include <iostream>
#include <math.h>using namespace std;
eightQueueNodeFactory factory;#define NUM_OF_LOOP 10000
#define NUM_OF_REBOOT 0
#define BEGIN_TEMP 10000
#define STOP_TEMP 1void mostSteepClimbing();
void firstSeclectionClimbing();
void randomRebootClimbing();
void simulatedAnnealing();int main() {int choice = 0;do{cout << endl;cout << "The Eight Queue Problem:" << endl;cout << " 0 -- most steep climbing" << endl;cout << " 1 -- first selection climbing" << endl;cout << " 2 -- random reboot climbing" << endl;cout << " 3 -- stimulated annealing" << endl;cout << "please input your choice: ";cin >> choice;if (choice == -1) break;switch(choice) {case 0:mostSteepClimbing();break;case 1:firstSeclectionClimbing();break;case 2:randomRebootClimbing();break;case 3:simulatedAnnealing();break;default:break;}}while(true);return 0;
}void mostSteepClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;eightQueueNode curState = factory.getARandomNode();eightQueueNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getBestNextNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {break;} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}void firstSeclectionClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;eightQueueNode curState = factory.getARandomNode();eightQueueNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getNextBetterNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {break;} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}void randomRebootClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0, numOfReboot = NUM_OF_REBOOT;eightQueueNode curState = factory.getARandomNode();eightQueueNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getNextBetterNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {if(numOfReboot > 0) {numOfReboot--;curState = factory.getARandomNode();tmp = curState;} else {break;}} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}void simulatedAnnealing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;double curTemp = BEGIN_TEMP;eightQueueNode curState = factory.getARandomNode();eightQueueNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;} else if(curTemp < STOP_TEMP){// 温度过低,则停止break;}// 走一步,则温度下降lenOfRoute++;curTemp -= 1;cost += factory.getARandomNeighbour(tmp);int deltaOfEvalutaion = factory.evaluate(tmp) - factory.evaluate(curState);if(deltaOfEvalutaion >= 0) {// 根据温度差来决定是否接受double probility = exp(curTemp/(deltaOfEvalutaion));if(rand() / double(RAND_MAX) < deltaOfEvalutaion) {curState = tmp;}} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
//***************************************************************
// eightDigit.hpp
// 包括八数码问题的eightDigitNode类和eightDigitFactory类的实现
// **************************************************************
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <math.h>#define LOOP_OF_SHUFFLE 50class eightDigitNode {
public:int arr[9];int blank_x = 2, blank_y = 2;eightDigitNode(){for(int i = 0; i < 8; i++) {arr[i] = i+1;}arr[8] = 0;}~eightDigitNode(){}eightDigitNode(const eightDigitNode& node) {arr[0] = node.arr[0];arr[1] = node.arr[1];arr[2] = node.arr[2];arr[3] = node.arr[3];arr[4] = node.arr[4];arr[5] = node.arr[5];arr[6] = node.arr[6];arr[7] = node.arr[7];arr[8] = node.arr[8];blank_x = node.blank_x;blank_y = node.blank_y;}bool operator==(const eightDigitNode& node) {for(int i = 0; i < 8; i++) {if(arr[i] != node.arr[i]) return false;}return true;}bool goLeft() {if(blank_y == 0) {return false;} else {arr[blank_x*3+blank_y] = arr[blank_x*3+blank_y-1];arr[blank_x*3+blank_y-1] = 0;blank_y--;return true;}}bool goRight() {if(blank_y == 2) {return false;} else {arr[blank_x*3+blank_y] = arr[blank_x*3+blank_y+1];arr[blank_x*3+blank_y+1] = 0;blank_y++;return true;}}bool goUp() {if(blank_x == 0) {return false;} else {arr[blank_x*3+blank_y] = arr[(blank_x-1)*3+blank_y];arr[(blank_x-1)*3+blank_y] = 0;blank_x--;return true;}}bool goDown() {if(blank_x == 2) {return false;} else {arr[blank_x*3+blank_y] = arr[(blank_x+1)*3+blank_y];arr[(blank_x+1)*3+blank_y] = 0;blank_x++; return true;}}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
class eightDigitNodeFactory{
private:int getManhattanDistian(const int& src, const int& target) {return abs(src%3 - target%3) + abs(src/3 - target/3); }int getNumOfWrongNumber(const eightDigitNode& node) {int res = 0;for(int i = 0; i < 8; i++) {if (node.arr[i] != i+1) res++;}if(node.arr[8] != 0) res++;return res; }bool getANeighbourNode(int direction, eightDigitNode& node) {switch(direction) {case 0: return node.goLeft();case 1: return node.goUp();case 2: return node.goRight();default:return node.goDown();}}bool isTheArrayAllTrue(bool isAllCheck[4]) {for(int i = 0; i < 4; i++) {if(isAllCheck[i] == false) {return false;}}return true;}public:eightDigitNodeFactory() {srand((unsigned)time(NULL));}eightDigitNode getARandomNode() {eightDigitNode output;int timesOfShuffle = rand() % LOOP_OF_SHUFFLE;while(timesOfShuffle--) {while(!getANeighbourNode(rand()%4, output));}return output;}int evaluate(const eightDigitNode& node) {eightDigitNode tmp;int distanceToTargetState = 0;for(int i = 0; i < 9; i++) {int j = 0;while(tmp.arr[j] != node.arr[i]) {j++;}distanceToTargetState += getManhattanDistian(i, j);}return distanceToTargetState + 3*getNumOfWrongNumber(node);}int getBestNextNode(eightDigitNode& node) {eightDigitNode tmp = node, ans = node;for(int i = 0; i < 4; i++) {tmp = node;if(getANeighbourNode(i, tmp) && evaluate(tmp) < evaluate(ans)) {ans = tmp;} else if(evaluate(tmp) == evaluate(ans)) {if(rand() / double(RAND_MAX) > 0.5) {ans = tmp;}}}node = ans;return 4;}int getNextBetterNode(eightDigitNode& node) {bool isAllCheck[4];for(int i = 0; i < 4; i++) {isAllCheck[i] = false;}eightDigitNode tmp = node;int costOfSearch = 1;while(evaluate(tmp) >= evaluate(node)) {// 子节点全部搜索过,都比当前差if(isTheArrayAllTrue(isAllCheck)) return costOfSearch;// 初始化,找下一邻居tmp = node;int a = rand() % 4;isAllCheck[a] = true;getANeighbourNode(a, tmp);costOfSearch++;if(tmp == node) {continue;}}node = tmp;return costOfSearch;}int getARandomNeighbour(eightDigitNode& node) {int costOfSearch = 0;eightDigitNode tmp = node;while(!getANeighbourNode(rand()%4, tmp)) {costOfSearch++;tmp = node;}node = tmp;return costOfSearch;}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
//*********************************************
// eightDigitRunner.cpp
// 包括八数码问题各算法的和简单交互界面实现
//********************************************
#include "eightDigit.hpp"
#include <iostream>
#include <math.h>using namespace std;
eightDigitNodeFactory factory;#define NUM_OF_LOOP 10000
#define NUM_OF_REBOOT 7
#define BEGIN_TEMP 100000
#define STOP_TEMP 1void mostSteepClimbing();
void firstSeclectionClimbing();
void randomRebootClimbing();
void simulatedAnnealing();int main() {int choice = 0;do{cout << endl;cout << "The Eight Digit Problem:" << endl;cout << " 0 -- most steep climbing" << endl;cout << " 1 -- first selection climbing" << endl;cout << " 2 -- random reboot climbing" << endl;cout << " 3 -- stimulated annealing" << endl;cout << "please input your choice: ";cin >> choice;if (choice == -1) break;switch(choice) {case 0:mostSteepClimbing();break;case 1:firstSeclectionClimbing();break;case 2:randomRebootClimbing();break;case 3:simulatedAnnealing();break;default:break;}}while(true);return 0;
}void mostSteepClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;eightDigitNode curState = factory.getARandomNode();eightDigitNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getBestNextNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {break;} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl;cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}void firstSeclectionClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;eightDigitNode curState = factory.getARandomNode();eightDigitNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getNextBetterNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {break;} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}
void randomRebootClimbing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;eightDigitNode curState = factory.getARandomNode();eightDigitNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;}lenOfRoute++;cost += factory.getNextBetterNode(tmp);if(factory.evaluate(tmp) >= factory.evaluate(curState)) {break;} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
}
void simulatedAnnealing() {int sumOfsuccess = 0, sumOfFailure = 0;double theSumOfCostOfSearchOfSuccess = 0, theSumLengthOfSolutionOfSuccess = 0;for(int i = 0; i < NUM_OF_LOOP; i++) {bool success = false;int cost = 0, lenOfRoute = 0;double curTemp = BEGIN_TEMP;eightDigitNode curState = factory.getARandomNode();eightDigitNode tmp = curState;while(true) {// if satisfied, then breakif (factory.evaluate(curState) == 0) {success = true;break;} else if(curTemp < STOP_TEMP){// 温度过低,则停止break;}// 走一步,则温度下降lenOfRoute++;curTemp -= 1;cost += factory.getARandomNeighbour(tmp);int deltaOfEvalutaion = factory.evaluate(tmp) - factory.evaluate(curState);if(deltaOfEvalutaion >= 0) {// 根据温度差来决定是否接受double probility = exp(curTemp/(deltaOfEvalutaion));if(rand() / double(RAND_MAX) < deltaOfEvalutaion) {curState = tmp;}} else {curState = tmp;}}if(success) {sumOfsuccess++;theSumOfCostOfSearchOfSuccess += cost;theSumLengthOfSolutionOfSuccess += lenOfRoute;} else {sumOfFailure++;}// outputcout << "case " << i << " cost: " << cost << " " << "lengthOfSolution: " << lenOfRoute << " ";if(success){cout << "success ";} else {cout << "failure ";}cout << endl;}cout << "Sum of success: " << sumOfsuccess << endl;cout << "Sum of failure " << sumOfFailure << endl;cout << "Rate of success " << sumOfsuccess/((double)(sumOfFailure + sumOfsuccess)) << endl; cout << "The average solution length of success:" << theSumLengthOfSolutionOfSuccess/NUM_OF_LOOP << endl;cout << "The average cost of search of success:" << theSumOfCostOfSearchOfSuccess/NUM_OF_LOOP << endl; return;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-258a4616f7.css" rel="stylesheet"></div>