肯德尔相关性分析_肯德尔的Tau机器学习相关性

肯德尔相关性分析

Before we begin I hope you guys have a basic understanding of Pearson’s and Spearman's correlation. As the name suggests this correlation was named after Maurice Kendall in the year 1938.

在开始之前,我希望你们对皮尔逊和斯皮尔曼的相关性有一个基本的了解。 顾名思义,这种关联是在1938年莫里斯·肯德尔(Maurice Kendall )命名的。

This type of correlation is best suited for the discrete data. Here we are not completely dependent on the directional flow of the ranks of various observation that we used to do in spearman’s correlation. Here we are more concerned with concordant pairs and discordant pairs.

这种相关性最适合离散数据。 在这里,我们并不完全依赖于我们过去在斯皮尔曼相关性中所做的各种观测的秩的方向流。 在这里,我们更关心一致对和不一致对。

1. Concordant pairs

1.协和对

For a given set of data the concordant pairs are such that for a given set of data suppose (x1, y1) and (x2, y2) then x1<x2 and y1<y2 where x1 and x2 can be any of the attribute values and y1 and y2 are the values in the target column.

对于给定的一组数据,一致对是这样的:对于给定的一组数据,假设(x1,y1)和(x2,y2),x1 <x2y1 <y2 ,其中x1x2可以是任何属性值,并且y1y2是目标列中的值。

2. Discordant pairs

2.不和谐对

For a given set of data, the discordant pairs would be the pairs which do not satisfy the property of the concordant pairs which is x1<x2 and y1<y2. Where x1 and x2 can be any of the attribute values and y1 and y2 are the values in the target column.

对于给定的数据集,不一致对将是不满足一致对的属性x1 <x2y1 <y2的对 。 其中x1x2可以是任何属性值,而y1y2是目标列中的值。

After calculating concordant and discordant pairs we find the difference between them and then divide the result by the number of possible combinations of the different pairs. The main aim of dividing the difference by the number of possible combination pairs is to make the value of Kendall's coefficient i.e. tau to fall under -1 to 1 so that it is easier to find out whether the given attribute should be used for predictive analysis of the target value. Unlike other correlations here too, 0 will signify 0 correlation and 1 signifies perfect correlation and -1 signifies the negative correlation.

在计算一致对和不一致对之后,我们找到它们之间的差异,然后将结果除以不同对可能组合的数量。 将差异除以可能的组合对的数量的主要目的是使肯德尔系数(即tau)的值落在-1到1之间,以便更容易找出是否应将给定属性用于对目标值。 也不同于此处的其他相关,0表示0相关,1表示完全相关,-1表示负相关。

The mathematical formula for the given correlation is mentioned below:

给定相关性的数学公式如下:

    ((Number of concordant pairs) - (number of discordant pairs))/(N(N-1))/2

Here, (N(N-1))/2 is the number of possible pairs in the dataset

这里, (N(N-1))/ 2是数据集中可能的对数

Dataset description:

数据集描述:

The data set used has two columns i.e.

使用的数据集有两列,即

  1. YearsExperience

    多年经验

  2. Salary

    薪水

The data set tell about the salary of the different employees based on the years of experience in their field so we would be using correlation to find out the relation between years of experience and the salary.

数据集根据他们在该领域的经验年数来说明不同员工的薪水,因此我们将使用相关性来找出经验年数与薪水之间的关系。

The data set can be downloaded from here: Salary_Data.csv

数据集可从此处下载: Salary_Data.csv

Now without wasting any time let us write the python code for the following correlation.

现在,不浪费时间,让我们为以下关联编写python代码。

Code:

码:

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 29 22:21:12 2018
@author: Raunak Goswami
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#reading the data
"""
here the directory of my code and the headbrain4.csv 
file is same make sure both the files are stored in 
the same folder or directory
""" 
data=pd.read_csv('Salary_Data.csv')
#this will show the first five records of the whole data
data.head()
#this will create a variable w which has the feature values i.e years of experience
w=data.iloc[:,0:1].values
#this will create a variable x which has the feature values i.e salary
y=data.iloc[:,1:2].values
print(round(data['YearsExperience'].corr(data['Salary'],method='kendall')))          
plt.scatter(w,y,c='red')
plt.title('scattered graph for kendall correlation between years of experience and salary' )
plt.xlabel('Gender')
plt.ylabel('brain weight')
plt.show()
data.info()
data['YearsExperience'].corr(data['Salary'])
k1=data.corr(method='kendall')
print("The table for all possible values of kendall'scoeffecients is as follows")
print(k1)

Output

输出量

kendall's tau correlation output
kendall's tau correlation output

From the given output the value of Kendall tau’s correlation coefficient between years of experience and salary comes out to be 0.841016 which is a fairly good correlation value. That was all for today guys hope you liked this article. Keep learning.

从给定的输出中, Kendall tau在多年经验和薪水之间的相关系数的值为0.841016 ,这是一个相当不错的相关值。 今天就是这些,希望大家喜欢这篇文章。 保持学习。

翻译自: https://www.includehelp.com/ml-ai/kendalls-tau-correlation-in-machine-learning.aspx

肯德尔相关性分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/545151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

40 张图带你搞懂 TCP 和 UDP

我们本篇文章的组织脉络如下运输层位于应用层和网络层之间&#xff0c;是 OSI 分层体系中的第四层&#xff0c;同时也是网络体系结构的重要部分。运输层主要负责网络上的端到端通信。运输层为运行在不同主机上的应用程序之间的通信起着至关重要的作用。下面我们就来一起探讨一下…

android手机两种方式获取IP地址

http://www.cnblogs.com/android100/p/Android-get-ip.html 1.使用WIFI 首先设置用户权限 Xml代码 <uses-permission android:name"android.permission.ACCESS_WIFI_STATE"></uses-permission> <uses-permission android:name"android.permi…

进程、线程、多线程相关总结

进程、线程、多线程相关总结 一、说说概念 1、进程&#xff08;process&#xff09; 狭义定义&#xff1a;进程就是一段程序的执行过程。 广义定义&#xff1a;进程是一个程序关于某个数据集合的一次运行。它是操作系统动态执行的基本单元&#xff0c;在传统的操作系统中&#…

z字扫描和光栅扫描的转换_扫描转换计算机图形中的直线

z字扫描和光栅扫描的转换扫描转换直线 (Scan Converting a Straight Line) For the scan conversion of a straight line, we need the two endpoints. In normal life, if we want to draw a line we simply draw it by using a scale or ruler. But we cant draw a line on t…

TextView 单行显示长文本

android:singleLine"true"//单行显示 android:ellipsize"end"//省略号出现在末尾 http://blog.csdn.net/wxg630815/article/details/8996091

腾讯推出高性能 RPC 开发框架

Tars是基于名字服务使用Tars协议的高性能RPC开发框架&#xff0c;同时配套一体化的服务治理平台&#xff0c;帮助个人或者企业快速的以微服务的方式构建自己稳定可靠的分布式应用。Tars是将腾讯内部使用的微服务架构TAF&#xff08;Total Application Framework&#xff09;多年…

Failed connect to github.com:443; No error

任务目标&#xff1a;将线上已有的https://github.com/eyjian/mooon.git克隆到本地的E:\GitHub\mooon目录问题描述&#xff1a;使用Git的Windows客户端UI工具GitHub执行克隆操作时报错&#xff0c;查看它的日志&#xff0c;难发现问题&#xff0c;于是改用Git的Windows命令行终…

python 程序耗时记录_Python学校的学生身高记录程序

python 程序耗时记录A team of 5 people is assigned with a task to record the heights of students in a school and they have decided to make a python program using class to record all the students height. 由5人组成的小组负责记录学校中学生的身高&#xff0c;他…

看完这篇文章,我再也不怕面试官问「垃圾回收」了...

前言 Java 相比 C/C 最显著的特点便是引入了自动垃圾回收 (下文统一用 GC 指代自动垃圾回收)&#xff0c;它解决了 C/C 最令人头疼的内存管理问题&#xff0c;让程序员专注于程序本身&#xff0c;不用关心内存回收这些恼人的问题&#xff0c;这也是 Java 能大行其道的重要原因之…

react从不会到入门

react从不会到入门1_react初识1.1_react基础环境搭建1.2_文件目录介绍1.2_JSX基础1.2.1_JSX介绍1.2.2_JSX表达式1.2.3_列表渲染1.2.4_条件渲染1.2.5_函数调用1.2.6_样式控制2_组件基础2.1_函数组件2.2_点击事件3_组件通讯3.1_父子关系4_生命周期4.1_挂载阶段4.2_更新阶段5_Hook…

Windows系统端口转发

1、添加端口转发 netsh interface portproxy add v4tov4 listenport10001 listenaddress192.168.1.100 connectport10001 connectaddress192.168.1.105 2、删除端口转发 netsh interface portproxy del v4tov4 listenport10001 listenaddress192.168.1.100 3、查看已存在的端口…

Microsoft Dynamics CRM 数据库连接存储位置在哪里 是在注册表里

Microsoft Dynamics CRM 数据库连接存储位置是在注册表里

将所有文件从目录复制到Python中的另一个目录

shutil (shell utilities) module, provides option to copy the files recursively from src to dst. shutil(shell实用程序)模块 &#xff0c;提供了将文件从src递归复制到dst的选项 。 The syntax to copy all files is: 复制所有文件的语法为&#xff1a; shutil.copytre…

Redis的8大数据类型,写的真好

来源 | blog.itzhouq.cn/redis2最近这几天的面试每一场都问到了&#xff0c;但是感觉回答的并不好&#xff0c;还有很多需要梳理的知识点&#xff0c;这里通过几篇 Redis 笔记整个梳理一遍。Redis 的八大数据类型官网可查看命令&#xff1a;http://www.redis.cn/commands.htmlR…

前后端(react+springboot)服务器部署

前后端&#xff08;reactspringboot&#xff09;服务器部署1_前端reactumi服务器部署1.1_前端生成dist目标文件1.2_准备连接服务器的工具1.3_安装nginx1.4_部署项目1.4.1_传输dist文件1.4.2_配置配置文件1.4.3_启动nginx2_后端springboot项目部署服务器2.1_后端生成目标文件2.2…

关于CentOS-6的默认带的mysql启动和安装问题

一开始想自己一步一步从编译开始搭建一个lanmp环境&#xff1b;从鸟哥的linux看到可以不用自己去安装&#xff0c;默认的可能更稳定&#xff0c;所以就开始探索系统自带的mysql和其他的工具&#xff0c;在mysql启动的时候遇到了问题。问题&#xff1a;默认的系统中根本就没有 【…

【LeetCode从零单排】No 191.Number of 1 Bits(考察位运算)

题目 Write a function that takes an unsigned integer and returns the number of ’1 bits it has (also known as the Hamming weight). For example, the 32-bit integer ’11 has binary representation 00000000000000000000000000001011, so the function should retur…

提高生产力,最全 MyBatisPlus 讲解!

如果你每天还在重复写 CRUD 的 SQL&#xff0c;如果你对这些 SQL 已经不耐烦了&#xff0c;那么你何不花费一些时间来阅读这篇文章&#xff0c;然后对已有的老项目进行改造&#xff0c;必有收获&#xff01;一、MP 是什么MP 全称 Mybatis-Plus &#xff0c;套用官方的解释便是成…

c#象棋程序_C ++程序确定象棋方块的颜色

c#象棋程序A chess board is equally divided into 64 identical squares that are black and white alternately. Each square on the chessboard can be identified by the coordinates as A to H on the horizontal axis and 1 to 8 on the vertical axis as shown in the f…

几个力学概念

简支梁 简支梁就是两端支座仅提供竖向约束&#xff0c;而不提供转角约束的支撑结构。简支梁仅在两端受铰支座约束&#xff0c;主要承受正弯矩&#xff0c;一般为静定结构。 只有两端支撑在柱子上的梁&#xff0c;主要承受正弯矩&#xff0c;一般为静定结构。体系温变、混凝土收…