【Java集合学习1】ArrayList集合学习及集合概述分析

JavaArrayList集合学习及集合学习概述

一、Java集合概述

Java 集合, 也叫作容器,主要是由两大接口派生而来:一个是 Collection接口,主要用于存放单一元素;另一个是 Map 接口,主要用于存放键值对。对于Collection 接口,下面又有三个主要的子接口:ListSetQueue
在这里插入图片描述

问题1:说说List、Set、Queue、Map四者的区别

  • List(对付顺序的好帮手): 存储的元素是有序的可重复的。
  • Set(注重独一无二的性质): 存储的元素不可重复的。
  • Queue(实现排队功能的叫号机): 按特定的排队规则来确定先后顺序,存储的元素是有序的、可重复的。
  • Map:使用**键值对(key-value)**存储,key 是无序的不可重复的,value 是无序的、可重复的,每个键最多映射到一个值

问题2:什么是ArrayList?简单介绍一下

ArrayList是List接口的实现类,其底层采用Object动态数组实现,不是线程安全的,ArrayList存储的元素是有序的,可重复的,ArrayList 支持插入(add)、删除(remove)、访问(get)等常见操作,并且提供了丰富的 API 操作方法。

问题3:说说ArrayList和Array(数组)的区别?

  • 1、ArrayList是基于动态数组实现的创建时不需要指定大小,Array是静态数组创建时必须指定大小。
  • 2、ArrayList会根据实际存储的元素动态地扩容,而 Array 被创建之后就不能改变它的长度了。
  • 3、ArrayList 允许你使用泛型来确保类型安全,Array 则不可以。
  • 4、ArrayList 中只能存储对象,对于基本类型数据,需要使用其对应的包装类(如 Integer、Double 等)。Array 可以直接存储基本类型数据,也可以存储对象。
  • 5、ArrayList 支持插入(add)、删除(remove)、访问(get)等常见操作,并且提供了丰富的 API 操作方法。Array 只是一个固定长度的数组,只能按照下标访问其中的元素,不具备动态添加、删除元素的能力。

问题4:ArrayList 和 Vector 的区别?

  • ArrayList 是 List 的主要实现类,底层使用 Object[]存储,适用于频繁的查找工作,线程不安全
  • VectorList 的古老实现类,底层使用Object[] 存储,线程安全

问题5:Vector和Stack的区别?

  • Vector 和 Stack 两者都是线程安全的,都是使用 synchronized 关键字进行同步处理。
  • Stack(栈)继承自Vector(列表),栈是先进后出。

问题6:ArrayList 和 LinkedList区别

  • 是否线程安全:ArrayList 和 LinkedList都是不同步的,也就是不保证线程安全。
  • 底层数据结构:ArrayList 底层使用的是 Object 数组;LinkedList 底层使用的是 双向链表 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。)
  • 是否支持快速随机访问LinkedList 不支持高效的随机元素访问,而 ArrayList(实现了 RandomAccess 接口) 支持。(注意:虽然LinkedList不支持随机访问,但它也有get方法,可以通过get指定位置的下标来获取到对应的元素,但它是通过遍历双向链表,从头节点开始顺序遍历得到的)
  • 插入和删除是否受元素位置的影响ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。比如:执行add(E e)方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element)),时间复杂度就为 O(n)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。LinkedList 采用链表存储,所以在头尾插入或者删除元素不受元素位置的影响(add(E e)、addFirst(E e)、addLast(E e)、removeFirst()、 removeLast()),时间复杂度为 O(1),如果是要在指定位置 i 插入和删除元素的话(add(int index, E element),remove(Object o),remove(int index)), 时间复杂度为 O(n) ,因为需要先移动到指定位置再插入和删除。
  • 内存空间占用ArrayList 的空间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。

问题7:LinkedList 为什么不能实现 RandomAccess 接口?

RandomAccess 是一个标记接口,用来表明实现该接口的类支持随机访问(即可以通过索引快速访问元素)。由于 LinkedList 底层数据结构是链表,内存地址不连续,只能通过指针来定位,不支持随机快速访问,所以不能实现 RandomAccess 接口。
(需要注意虽然LinkedList不支持随机访问,但它也有get方法,可以通过get指定位置的下标来获取到对应的元素,但它是通过遍历双向链表,从头节点开始顺序遍历得到的)

问题8:ArrayList 可以添加 null 值吗?

ArrayList 中可以存储任何类型的对象,包括 null 值。不过,不建议向ArrayList 中添加 null 值, null 值无意义,会让代码难以维护比如忘记做判空处理就会导致空指针异常。

二、ArrayList的扩容机制分析(***)

(一)ArrayList 的构造函数

ArrayList 的初始化方式有三种:

  • 方式1:创建无参构造函数
  • 方式2:创建带初始化容量参数的构造函数(用户自己指定初始容量
  • 方式3:创建包含指定collection集合元素的集合
/*** 集合的初始化方式(三种)*///方式1:创建无参构造函数List list1 = new ArrayList();//方式2:创建带初始化容量参数的构造函数(用户自己指定初始容量)List list2 = new ArrayList<>(5);//方式3:创建包含指定collection集合元素的集合List<Integer> temp = new ArrayList<Integer>();temp.add(1);temp.add(2);temp.add(3);List list3 = new ArrayList(temp);

三种方式具体的源代码如下:

	transient Object[] elementData; // non-private to simplify nested class access/*** 默认初始容量大小*/private static final int DEFAULT_CAPACITY = 10;private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};/***默认构造函数,使用初始容量10构造一个空列表(无参数构造,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。)*/public ArrayList() {this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;}/*** 带初始容量参数的构造函数。(用户自己指定容量)*/public ArrayList(int initialCapacity) {if (initialCapacity > 0) {//初始容量大于0//创建initialCapacity大小的数组this.elementData = new Object[initialCapacity];} else if (initialCapacity == 0) {//初始容量等于0//创建空数组this.elementData = EMPTY_ELEMENTDATA;} else {//初始容量小于0,抛出异常throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);}}/***构造包含指定collection元素的列表,这些元素利用该集合的迭代器按顺序返回*如果指定的集合为null,throws NullPointerException。*/public ArrayList(Collection<? extends E> c) {elementData = c.toArray();if ((size = elementData.length) != 0) {// c.toArray might (incorrectly) not return Object[] (see 6260652)if (elementData.getClass() != Object[].class)elementData = Arrays.copyOf(elementData, size, Object[].class);} else {// replace with empty array.this.elementData = EMPTY_ELEMENTDATA;}}

注意:
以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。

(二)ArrayList的扩容机制

这里以无参构造函数的方式创建ArrayList为例。

1、先来看 add 方法

    /*** 将指定的元素追加到此列表的末尾。*/public boolean add(E e) {//添加元素之前,先调用ensureCapacityInternal方法//这里size +1 作用:主要是为了确保在数组添加完元素之后仍有足够的容量,//起到一个更加保险的作用ensureCapacityInternal(size + 1);  // Increments modCount!!//这里看到ArrayList添加元素的实质就相当于为数组赋值elementData[size++] = e;return true;}

2、再来看看 ensureCapacityInternal() 方法

   //得到最小扩容量private void ensureCapacityInternal(int minCapacity) {if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {// 获取默认的容量和传入参数的较大值minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);}ensureExplicitCapacity(minCapacity);}

当 要 add 进第 1 个元素时,minCapacity 为 1,在 Math.max()方法比较后,minCapacity 为 10。

3、ensureExplicitCapacity() 方法

  //判断是否需要扩容private void ensureExplicitCapacity(int minCapacity) {modCount++;// overflow-conscious codeif (minCapacity - elementData.length > 0)//调用grow方法进行扩容,调用此方法代表已经开始扩容了grow(minCapacity);}

这里我们对上述进行概述分析下:

  • 当我们要 add 进第 1 个元素到 ArrayList 时,elementData.length 为 0 (因为还是一个空的 list),因为执行了 ensureCapacityInternal() 方法以当前空数组长度0 和 默认值10 进行比较 ,0 < 10 所以 minCapacity 此时为 10。此时,minCapacity - elementData.length > 0成立,所以会进入 grow(minCapacity) 方法。
  • 当 add 第 2 个元素时,minCapacity 为 2,此时 elementData.length(容量)在添加第一个元素后扩容成 10 了。此时,minCapacity - elementData.length > 0 不成立,所以不会进入 (执行)grow(minCapacity) 方法。
  • 添加第 3、4···到第 10 个元素时,依然不会执行 grow 方法,数组容量都为 10。
  • 直到添加第 11 个元素,minCapacity(为 11)比 elementData.length(为 10)要大。进入 grow 方法进行扩容。

4、grow() 方法(***)

    /*** 要分配的最大数组大小*/private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;/*** ArrayList扩容的核心方法。*/private void grow(int minCapacity) {// oldCapacity为旧容量,newCapacity为新容量int oldCapacity = elementData.length;//将oldCapacity 右移一位,其效果相当于oldCapacity /2,//我们知道位运算的速度远远快于整除运算,整句运算式的结果就是将新容量更新为旧容量的1.5倍,int newCapacity = oldCapacity + (oldCapacity >> 1);//然后检查新容量是否大于最小需要容量,若还是小于最小需要容量,那么就把最小需要容量当作数组的新容量,if (newCapacity - minCapacity < 0)newCapacity = minCapacity;// 如果新容量大于 MAX_ARRAY_SIZE,进入(执行) `hugeCapacity()` 方法来比较 minCapacity 和 MAX_ARRAY_SIZE,//如果minCapacity大于最大容量,则新容量则为`Integer.MAX_VALUE`,否则,新容量大小则为 MAX_ARRAY_SIZE 即为 `Integer.MAX_VALUE - 8`。if (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);// minCapacity is usually close to size, so this is a win:elementData = Arrays.copyOf(elementData, newCapacity);}

注意:int newCapacity = oldCapacity + (oldCapacity >> 1),所以 ArrayList 每次扩容之后容量都会变为原来的 1.5 倍左右(oldCapacity 为偶数就是 1.5 倍,否则是 1.5 倍左右)! 奇偶不同,比如:10+10/2 = 15, 33+33/2=49。如果是奇数的话会丢掉小数.

我们来详细探究一下grow方法:

  • 当 add 第 1 个元素时,oldCapacity 为 0,经比较后第一个 if 判断成立,newCapacity = minCapacity(为 10)。但是第二个 if 判断不会成立,即 newCapacity 不比 MAX_ARRAY_SIZE 大,则不会进入 hugeCapacity 方法。数组容量为 10,add 方法中 return true,size 增为 1。
  • 当 add 第 11 个元素进入 grow 方法时,newCapacity 为 15,比 minCapacity(为 11)大,第一个 if 判断不成立。新容量没有大于数组最大 size,不会进入 hugeCapacity 方法。数组容量扩为 15,add 方法中 return true,size 增为 11。以此类推······

5、hugeCapacity() 方法。
从上面 grow() 方法源码我们知道:如果新容量大于 MAX_ARRAY_SIZE,进入(执行) hugeCapacity() 方法来比较 minCapacity 和 MAX_ARRAY_SIZE,如果 minCapacity 大于最大容量,则新容量则为Integer.MAX_VALUE,否则,新容量大小则为 MAX_ARRAY_SIZE 即为 Integer.MAX_VALUE - 8。

    private static int hugeCapacity(int minCapacity) {if (minCapacity < 0) // overflowthrow new OutOfMemoryError();//对minCapacity和MAX_ARRAY_SIZE进行比较//若minCapacity大,将Integer.MAX_VALUE作为新数组的大小//若MAX_ARRAY_SIZE大,将MAX_ARRAY_SIZE作为新数组的大小//MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE;}

(三)System.arraycopy() 和 Arrays.copyOf()方法

阅读源码的话,我们就会发现 ArrayList 中大量调用了这两个方法。比如:我们上面讲的扩容操作以及add(int index, E element)、toArray() 等方法中都用到了该方法!

1、System.arraycopy() 方法

    // 我们发现 arraycopy 是一个 native 方法,接下来我们解释一下各个参数的具体意义/***   复制数组* @param src 源数组* @param srcPos 源数组中的起始位置* @param dest 目标数组* @param destPos 目标数组中的起始位置* @param length 要复制的数组元素的数量*/public static native void arraycopy(Object src,  int  srcPos,Object dest, int destPos,int length);

在ArrayList使用场景:在ArrayList中的指定位置添加元素add(int index, E element)

    /*** 在此列表中的指定位置插入指定的元素。*先调用 rangeCheckForAdd 对index进行界限检查;然后调用 ensureCapacityInternal 方法保证capacity足够大;*再将从index开始之后的所有成员后移一个位置;将element插入index位置;最后size加1。*/public void add(int index, E element) {rangeCheckForAdd(index);ensureCapacityInternal(size + 1);  // Increments modCount!!//arraycopy()方法实现数组自己复制自己//elementData:源数组;index:源数组中的起始位置;elementData:目标数组;index + 1:目标数组中的起始位置; size - index:要复制的数组元素的数量;System.arraycopy(elementData, index, elementData, index + 1, size - index);elementData[index] = element;size++;}

我们来写一个简单示例:

    public static void main(String[] args) {int[] a = new int[10];a[0] = 10;a[1] = 20;a[2] = 30;a[3] = 40;System.arraycopy(a, 2, a, 4, 3);for (int i = 0; i < 10; i++) {System.out.println(a[i]);}}

输出结果:
在这里插入图片描述
2、Arrays.copyOf()方法

传入一个数组指针,和新数组长度

    public static int[] copyOf(int[] original, int newLength) {// 申请一个新的数组int[] copy = new int[newLength];// 调用System.arraycopy,将源数组中的数据进行拷贝,并返回新的数组System.arraycopy(original, 0, copy, 0,Math.min(original.length, newLength));return copy;}

在ArrayList中的使用场景:

   /**以正确的顺序返回一个包含此列表中所有元素的数组(从第一个到最后一个元素); 返回的数组的运行时类型是指定数组的运行时类型。*/public Object[] toArray() {//elementData:要复制的数组;size:要复制的长度return Arrays.copyOf(elementData, size);}

个人觉得使用 Arrays.copyOf()方法主要是为了给原有数组扩容,我么来个例子:

public static void main(String[] args) {int[] a = new int[10];a[0] = 10;a[1] = 20;a[2] = 30;a[3] = 40;System.arraycopy(a, 2, a, 4, 3);for (int i = 0; i < 10; i++) {System.out.println(a[i]);}int[] b = Arrays.copyOf(a, 15);System.out.println("b.length = " + b.length);}

输出结果:
在这里插入图片描述
两者联系:
看两者源代码可以发现 Arrays.copyOf()内部实际调用了 System.arraycopy() 方法

两者区别:
System.arraycopy() 需要目标数组,将原数组拷贝到你自己定义的数组里或者原数组,而且可以选择拷贝的起点和长度以及放入新数组中的位置 Arrays.copyOf() 是系统自动在内部新建一个数组,并返回该数组。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54290.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache Poi 实现Excel多级联动下拉框

由于最近做的功能&#xff0c;需要将接口返回的数据列表&#xff0c;输出到excel中&#xff0c;以供后续导入&#xff0c;且网上现有的封装&#xff0c;使用起来都较为麻烦&#xff0c;故参考已有做法封装了工具类。 使用apache poi实现excel联动下拉框思路 创建隐藏单元格&a…

如何评估开源项目的活跃度和可持续性?

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

元矿山下的音视频应用

// 近年来&#xff0c;矿业的技术和管理模式随着元宇宙的火爆和自动驾驶技术的发展逐渐变化、升级&#xff0c;进而衍生出元矿山的概念&#xff0c;音视频技术也在其中成为了关键一环。LiveVideoStackCon 2023 上海站邀请了来自希迪智驾的任思亮&#xff0c;为大家分享希迪智…

基于神经网络的3D地质模型

地球科学家需要对地质环境进行最佳估计才能进行模拟或评估。 除了地质背景之外&#xff0c;建立地质模型还需要一整套数学方法&#xff0c;如贝叶斯网络、协同克里金法、支持向量机、神经网络、随机模型&#xff0c;以在钻井日志或地球物理信息确实稀缺或不确定时定义哪些可能是…

机器学习笔记之优化算法(十九)经典牛顿法的收敛性分析

机器学习笔记之优化算法——经典牛顿法的收敛性分析 引言回顾&#xff1a;算法的收敛性分析 Wolfe \text{Wolfe} Wolfe准则的收敛性分析梯度下降法在凸函数的收敛性分析梯度下降法在强凸函数的收敛性分析 经典牛顿法的收敛性分析收敛性定理介绍证明过程关于隐含条件的说明 引言…

FFmpeg5.0源码阅读——FFmpeg大体框架

摘要&#xff1a;前一段时间熟悉了下FFmpeg主流程源码实现&#xff0c;对FFmpeg的整体框架有了个大概的认识&#xff0c;因此在此做一个笔记&#xff0c;希望以比较容易理解的文字描述FFmpeg本身的结构&#xff0c;加深对FFmpeg的框架进行梳理加深理解&#xff0c;如果文章中有…

Android Mvvm设计模式的详解与实战教程

一、介绍 在开发设计模式中&#xff0c;模式经历了多次迭代&#xff0c;从MVC到MVP&#xff0c;再到如今的MVVM。发现的过程其实很简单&#xff0c;就是为了项目更好的管理。 设计模式严格来说属于软件工程的范畴&#xff0c;但是如今在各大面试中或者开发中&#xff0c;设计模…

三方接口调用设计方案

在为第三方系统提供接口的时候&#xff0c;肯定要考虑接口数据的安全问题&#xff0c;比如数据是否被篡改&#xff0c;数据是否已经过时&#xff0c;数据是否可以重复提交等问题 在设计三方接口调用的方案时&#xff0c;需要考虑到安全性和可用性。以下是一种设计方案的概述&a…

C# 学习笔记--个人学习使用 <2>

C# 学习笔记 Chapter 2 比较硬的基础部分Section 1 委托Part 1 Action 与 func 委托的示例Part 2 自定义委托Part 3 委托的一般使用Part 4 委托的高级使用Part 5 适时地使用接口 Interface 取代一些对委托的使用 Section 2 事件Part 1 初步了解事件Part 2 事件的应用Part 3 事件…

【Luniux】解决Ubuntu外接显示器不显示的问题

Luniux】解决Ubuntu外接显示器不显示的问题 文章目录 Luniux】解决Ubuntu外接显示器不显示的问题1. 检查nvidia显卡驱动是否正常2. 更新驱动3. 检查显示器是否能检测到Reference 1. 检查nvidia显卡驱动是否正常 使用命令行 nvidia-smi来检查显卡驱动是否正常&#xff0c;如果…

持续集成与持续交付:现代软件测试的变革之路

引言 在数字化时代&#xff0c;软件开发的速度和复杂性都在不断增加。为了满足市场的需求&#xff0c;企业需要更快、更高效地交付高质量的软件产品。在这样的背景下&#xff0c;持续集成与持续交付&#xff08;CI/CD&#xff09;成为了软件开发和测试的核心实践。 软件开发的…

论文阅读 The Power of Tiling for Small Object Detection

The Power of Tiling for Small Object Detection Abstract 基于深度神经网络的技术在目标检测和分类方面表现出色。但这些网络在适应移动平台时可能会降低准确性&#xff0c;因为图像分辨率的增加使问题变得更加困难。在低功耗移动设备上实现实时小物体检测一直是监控应用的…

小研究 - Java虚拟机性能及关键技术分析

利用specJVM98和Java Grande Forum Benchmark suite Benchmark集合对SJVM、IntelORP,Kaffe3种Java虚拟机进行系统测试。在对测试结果进行系统分析的基础上&#xff0c;比较了不同JVM实现对性能的影响和JVM中关键模块对JVM性能的影响&#xff0c;并提出了提高JVM性能的一些展望。…

css之文字连续光影特效、动画、scss

文章目录 效果图htmlscsscss 效果图 html <div><span>C</span><span>O</span><span>L</span><span>O</span><span>R</span><span>F</span><span>U</span><span>L</span&…

WOFOST模型与PCSE模型应用

实现作物产量的准确估算对于农田生态系统响应全球变化、可持续发展、科学粮食政策制定、粮食安全维护都至关重要。传统的经验模型、光能利用率模型等估产模型原理简单&#xff0c;数据容易获取&#xff0c;但是作物生长发育非常复杂&#xff0c;中间涉及众多生理生化过程&#…

Java学数据结构(2)——树Tree 二叉树binary tree 二叉查找树 AVL树 树的遍历

目录 引出什么是树Tree&#xff1f;树的实现二叉树binary tree查找树ADT——二叉查找树Binary Search Tree1.contains方法2.findMax和findMin方法3.insert方法4.remove方法&#xff08;复杂&#xff09;二叉查找树的深度 AVL(Adelson-Velskii和Landis)树——平衡条件(balance c…

流处理详解

【今日】 目录 一 Stream接口简介 Optional类 Collectors类 二 数据过滤 1. filter()方法 2.distinct()方法 3.limit()方法 4.skip()方法 三 数据映射 四 数据查找 1. allMatch()方法 2. anyMatch()方法 3. noneMatch()方法 4. findFirst()方法 五 数据收集…

Day43|leetcode 1049.最后一块石头的重量II、494.目标和、474.一和零

leetcode 1049.最后一块石头的重量II 题目链接&#xff1a;1049. 最后一块石头的重量 II - 力扣&#xff08;LeetCode&#xff09; 视频链接&#xff1a;动态规划之背包问题&#xff0c;这个背包最多能装多少&#xff1f;LeetCode&#xff1a;1049.最后一块石头的重量II_哔哩…

date_range()函数--Pandas

1. 函数功能 生成连续的日期时间序列 2. 函数语法 pandas.date_range(startNone, endNone, periodsNone, freqNone, tzNone, normalizeFalse, nameNone, inclusiveboth, *, unitNone, **kwargs)3. 函数参数 参数含义start可选参数&#xff0c;起始日期end可选参数&#xff…