参考链接: Python | 可迭代和迭代器之间的区别
本篇文章简单谈谈可迭代对象,迭代器和生成器之间的关系。
三者简要关系图
可迭代对象与迭代器
刚开始我认为这两者是等同的,但后来发现并不是这样;下面直接抛出结论:
1)可迭代对象包含迭代器。2)如果一个对象拥有__iter__方法,其是可迭代对象;如果一个对象拥有next方法,其是迭代器。3)定义可迭代对象,必须实现__iter__方法;定义迭代器,必须实现__iter__和next方法。
你也许会问,结论3与结论2是不是有一点矛盾?既然一个对象拥有了next方法就是迭代器,那为什么迭代器必须同时实现两方法呢?
因为结论1,迭代器也是可迭代对象,因此迭代器必须也实现__iter__方法。
介绍一下上面涉及到的两个方法:
1)__iter__()
该方法返回的是当前对象的迭代器类的实例。因为可迭代对象与迭代器都要实现这个方法,因此有以下两种写法。
写法一:用于可迭代对象类的写法,返回该可迭代对象的迭代器类的实例。
写法二:用于迭代器类的写法,直接返回self(即自己本身),表示自身即是自己的迭代器。
也许有点晕,没关系,下面会给出两写法的例子,我们结合具体例子看。
2)next()
返回迭代的每一步,实现该方法时注意要最后超出边界要抛出StopIteration异常。
下面举个可迭代对象与迭代器的例子:
[python]
view plain
copy
#!/usr/bin/env python # coding=utf-8 class MyList(object): # 定义可迭代对象类 def __init__(self, num): self.data = num # 上边界 def __iter__(self): return MyListIterator(self.data) # 返回该可迭代对象的迭代器类的实例 class MyListIterator(object): # 定义迭代器类,其是MyList可迭代对象的迭代器类 def __init__(self, data): self.data = data # 上边界 self.now = 0 # 当前迭代值,初始为0 def __iter__(self): return self # 返回该对象的迭代器类的实例;因为自己就是迭代器,所以返回self def next(self): # 迭代器类必须实现的方法 while self.now < self.data: self.now += 1 return self.now - 1 # 返回当前迭代值 raise StopIteration # 超出上边界,抛出异常 my_list = MyList(5) # 得到一个可迭代对象 print type(my_list) # 返回该对象的类型 my_list_iter = iter(my_list) # 得到该对象的迭代器实例,iter函数在下面会详细解释 print type(my_list_iter) for i in my_list: # 迭代 print i
运行结果:
问题:上面的例子中出现了iter函数,这是什么东西?和__iter__方法有关系吗?
其实该函数与迭代是息息相关的,通过在Python命令行中打印“help(iter)”得知其有以下两种用法。
用法一:iter(callable, sentinel)
不停的调用callable,直至其的返回值等于sentinel。其中的callable可以是函数,方法或实现了__call__方法的实例。
用法二:iter(collection)
1)用于返回collection对象的迭代器实例,这里的collection我认为表示的是可迭代对象,即该对象必须实现__iter__方法;
事实上iter函数与__iter__方法联系非常紧密,iter()是直接调用该对象的__iter__(),并把__iter__()的返回结果作为自己的返回值,故该用法常被称为“创建迭代器”。
2)iter函数可以显示调用,或当执行“for i in obj:”,Python解释器会在第一次迭代时自动调用iter(obj),之后的迭代会调用迭代器的next方法,for语句会自动处理最后抛出的StopIteration异常。
通过上面的例子,相信对可迭代对象与迭代器有了更具体的认识,那么生成器与它们有什么关系呢?下面简单谈一谈
生成器
生成器是一种特殊的迭代器,生成器自动实现了“迭代器协议”(即__iter__和next方法),不需要再手动实现两方法。
生成器在迭代的过程中可以改变当前迭代值,而修改普通迭代器的当前迭代值往往会发生异常,影响程序的执行。
看一个生成器的例子:
[python]
view plain
copy
#!/usr/bin/env python # coding=utf-8 def myList(num): # 定义生成器 now = 0 # 当前迭代值,初始为0 while now < num: val = (yield now) # 返回当前迭代值,并接受可能的send发送值;yield在下面会解释 now = now + 1 if val is None else val # val为None,迭代值自增1,否则重新设定当前迭代值为val my_list = myList(5) # 得到一个生成器对象 print my_list.next() # 返回当前迭代值 print my_list.next() my_list.send(3) # 重新设定当前的迭代值 print my_list.next() print dir(my_list) # 返回该对象所拥有的方法名,可以看到__iter__与next在其中
运行结果:
具有yield关键字的函数都是生成器
,yield可以理解为return,返回后面的值给调用者。不同的是return返回后,函数会释放,而生成器则不会。在直接调用next方法或用for语句进行下一次迭代时,生成器会从yield下一句开始执行,直至遇到下一个yield。
#生成器函数,函数里只要有yield关键字def gen_func():
yield 1
yield 2
yield 3
def fib(index):
if index <= 2:
return 1
else:
return fib(index-1) + fib(index-2)
def fib2(index):
re_list = []
n,a,b = 0,0,1
while n<index:
re_list.append(b)
a,b = b, a+b
n += 1
return re_list
def gen_fib(index):
n,a,b = 0,0,1
while n<index:
yield b
a,b = b, a+b
n += 1
for data in gen_fib(10):
print (data)
# print (gen_fib(10))
# 斐波拉契 0 1 1 2 3 5 8
#惰性求值, 延迟求值提供了可能
def func():
return 1
if __name__ == "__main__":
#生成器对象, python编译字节码的时候就产生了,
gen = gen_func()
for value in gen:
print (value)
# re = func()
# pass