深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN

生成对抗网络 – GAN 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。

目录

生成对抗网络 GAN 的基本原理

大白话版本

非大白话版本

第一阶段:固定「判别器D」,训练「生成器G」

第二阶段:固定「生成器G」,训练「判别器D」

循环阶段一和阶段二

GAN的优缺点

10大典型的GAN算法

GAN 的13种实际应用


人工提取特征——自动提取特征

深度学习最特别最厉害的地方就是能够自己学习特征提取。

机器的超强算力可以解决很多人工无法解决的问题。自动化后,学习能力更强,适应性也更强。

人工判断生成结果的好坏——自动判断和优化

训练集需要大量的人工标注数据,这个过程是成本很高且效率很低的。而人工判断生成结果的好坏也是如此,有成本高和效率低的问题。

而 GAN 能自动完成这个过程,且不断的优化,这是一种效率非常高,且成本很低的方式。GAN是如何实现自动化的呢?下面我们讲解一下他的原理。

生成对抗网络 GAN 的基本原理

大白话版本

知乎上有一个很不错的解释,大家应该都能理解:

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。

非大白话版本

生成对抗网络(GAN)由2个重要的部分构成:

  1. 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器
  2. 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”

下面详细介绍一下过程:

第一阶段:固定「判别器D」,训练「生成器G」

我们使用一个还 OK 判别器,让一个「生成器G」不断生成“假数据”,然后给这个「判别器D」去判断。

一开始,「生成器G」还很弱,所以很容易被揪出来。

但是随着不断的训练,「生成器G」技能不断提升,最终骗过了「判别器D」。

到了这个时候,「判别器D」基本属于瞎猜的状态,判断是否为假数据的概率为50%。

第二阶段:固定「生成器G」,训练「判别器D」

当通过了第一阶段,继续训练「生成器G」就没有意义了。这个时候我们固定「生成器G」,然后开始训练「判别器D」。

「判别器D」通过不断训练,提高了自己的鉴别能力,最终他可以准确的判断出所有的假图片。

到了这个时候,「生成器G」已经无法骗过「判别器D」。

循环阶段一和阶段二

通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。

最终我们得到了一个效果非常好的「生成器G」,我们就可以用它来生成我们想要的图片了。

下面的实际应用部分会展示很多“惊艳”的案例。

如果对 GAN 的详细技术原理感兴趣,可以看看下面2篇文章:

《生成性对抗网络(GAN)初学者指南 – 附代码》

《长文解释生成对抗网络GAN的详细原理(20分钟阅读)》

GAN的优缺点

3个优势

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺陷

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

10大典型的GAN算法

GAN 算法有数百种之多,大家对于 GAN 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。

下图是每个月关于 GAN 的论文发表数量:

关于GANs的论文呈指数级增长

如果你对 GANs 算法感兴趣,可以在 「GANs动物园」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。

算法论文代码
GAN论文地址代码地址
DCGAN论文地址代码地址
CGAN论文地址代码地址
CycleGAN论文地址代码地址
CoGAN论文地址代码地址
ProGAN论文地址代码地址
WGAN论文地址代码地址
SAGAN论文地址代码地址
BigGAN论文地址代码地址

上面内容整理自《Generative Adversarial Networks – The Story So Far》原文中对算法有一些粗略的说明,感兴趣的可以看看。

GAN 的13种实际应用

GAN 看上去不如「语音识别」「文本挖掘」那么直观。不过他的应用已经进入到我们的生活中了。下面给大家列举一些 GAN 的实际应用。

生成图像数据集

人工智能的训练是需要大量的数据集的,如果全部靠人工收集和标注,成本是很高的。GAN 可以自动的生成一些数据集,提供低成本的训练数据。

GANs生成人脸的矢量算法案例

生成人脸照片

生成人脸照片是大家很熟悉的应用,但是生成出来的照片用来做什么是需要思考的问题。因为这种人脸照片还处于法律的边缘。

2014年至2017年GANs能力进展的实例

生成照片、漫画人物

GAN 不但能生成人脸,还能生成其他类型的照片,甚至是漫画人物。

GANs生成的照片

GANs生成的漫画人物

图像到图像的转换

简单说就是把一种形式的图像转换成另外一种形式的图像,就好像加滤镜一样神奇。例如:

  • 把草稿转换成照片
  • 把卫星照片转换为Google地图的图片
  • 把照片转换成油画
  • 把白天转换成黑夜

用pix2pix从草图到彩色照片的示例

GANs应用-照片到油画、马到斑马、冬天到夏天、照片到google地图

文字到图像的转换

特别是他们的 StackGAN,从鸟类和花卉等简单对象的文本描述中生成逼真的照片。

从StackGAN获取鸟类的文本描述和GAN生成照片的示例

语意 – 图像 – 照片 的转换

在2017年标题为“ 高分辨率图像合成和带条件GAN的语义操纵 ”的论文中,演示了在语义图像或草图作为输入的情况下使用条件GAN生成逼真图像。

语义图像和GAN生成的城市景观照片的示例

自动生成模特

在2017年标题为“ 姿势引导人形象生成 ”的论文中,可以自动生成人体模特,并且使用新的姿势。

GAN生成了新的模特姿势

照片到Emojis

GANs 可以通过人脸照片自动生成对应的表情(Emojis)。

名人照片和GAN生成的表情符号示例

照片编辑

使用GAN可以生成特定的照片,例如更换头发颜色、更改面部表情、甚至是改变性别。

使用IcGAN编辑照片的效果

预测不同年龄的长相

给一张人脸照片, GAN 就可以帮你预测不同年龄阶段你会长成什么样。

用具有不同表观年龄的GAN生成的面部照片的示例

提高照片分辨率,让照片更清晰

给GAN一张照片,他就能生成一张分辨率更高的照片,使得这个照片更加清晰。

GANs在原始照片的基础上增加分辨率,使照片更清晰

照片修复

假如照片中有一个区域出现了问题(例如被涂上颜色或者被抹去),GAN可以修复这个区域,还原成原始的状态。

遮住照片中间的一部分,GANs可以很好的修复

自动生成3D模型

给出多个不同角度的2D图像,就可以生成一个3D模型。

从2D图像到3D椅子模型的建立过程

生成式对抗网络(GAN, Generative Adversarial Networks )

是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。

生成对抗网络(GAN)是一类用于无监督机器学习的人工智能算法,由在零和游戏框架中相互竞争的两个神经网络系统实现。他们是由Ian Goodfellow 等人介绍的。在2014年这种技术可以生成照片看起来至少在表面上真实的人的观察员,有很多的现实特征(虽然在测试中的人可以真正告诉在许多情况下产生)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53962.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui:Vue开发者的最佳伙伴

如果你是一个使用Vue框架开发网页应用的开发者,那么你一定不会想错过element-ui这个优秀的UI组件库。element-ui为你提供了一套完善的设计规范和丰富的组件示例,让你可以快速地构建出美观、高效和易用的页面。在这篇博客中,我将介绍element-u…

基于poi生成excel模板并生成下拉选择框

直接上代码&#xff08;有注释&#xff09; public void downloadImportTemplate(HttpServletResponse response) {try {ServletOutputStream outputStream response.getOutputStream();//创建工作表XSSFWorkbook workbook new XSSFWorkbook();//标题行的标题List<String…

CSS 对象模型

定义&#xff1a; CSS对象模型是一组允许用JavaScript操纵CSS的API&#xff0c;他很像DOM&#xff0c;但针对的是CSS而不是HTML。它允许用户动态地读取和修改CSS样式 CSS的值是没有类型的&#xff0c;也就是使用String对象来表示 下面列一些常用的API 对象&#xff1a; 1. C…

设计模式-适配器模式

核心思想 见名知意&#xff0c;是作为两个不兼容的接口的桥梁&#xff0c;属于结构型模式使得原来由于接口不兼容而不能一起工作的那些类可以一起工作 常见的几类适配器 类的适配器模式 想将一个类转换成满足另外一个新接口的类时&#xff0c;可以使用类的适配器模式&#x…

springCloudGateway网关配置

1.配置跨域支持 /*** 跨域支持*/ Configuration public class CorsConfig {Beanpublic CorsWebFilter corsFilter() {CorsConfiguration config new CorsConfiguration();config.addAllowedMethod("*");config.addAllowedOrigin("*");config.addAllowedH…

基于CH552G主控的开源九键小键盘(资料齐全)

Content 1. 前言2. CH55X Arduino平台环境搭建2.1 常规安装2.2 HFS挂载本地服务器安装 3. 例程使用3.1 工程下载及编译3.2 程序烧录 1. 前言 芯片选型&#xff1a;CH552G 本文主要解决Arduino下CH552G芯片包的环境配置问题 开源地址&#xff1a;CV键盘有线小键盘 - 嘉立创ED…

一分钟学会用pygame制作棋盘背景

一分钟一个Pygame案例&#xff0c;这一集我们来学习一下如何生成一个视频中的棋盘背景效果&#xff0c;非常非常简单。 视频教程链接&#xff1a;https://www.bilibili.com/video/BV17G411d7Ah/ 当然我们这里是用来做页面的背景&#xff0c;你也可以拿来做别的效果&#xff0…

fdm-cli,一个致力于管理项目初始化模板的工具脚手架

希望各位可以了解fdm-cli&#xff0c;并在合适的时候尝试使用一下。 阅读本文你将获得 一个&#xff08;好用的&#xff09;项目模板初始化工具这个&#xff08;好用的&#xff09;工具的使用方法给作者点一个 star 的机会 一、不愿再复制粘贴 小N每次在写项目的时候&#x…

vmware禁用内存交换,减少磁盘占用

1、全局禁用交换内存 选择VMware菜单&#xff1a;编辑–>首选项–>内存&#xff0c;选取第一项“调整所有虚拟机内存使其适应预留的主机RAM&#xff08;F&#xff09;”。 设置后虚拟机只使用主机内存&#xff0c;不会读硬盘&#xff08;不使用类似交换文件的形式&#…

php curl apache 超时 500错误

web请求超过40s 就返回500错误 php的超时时间 set_time_limit无效 curl CURLOPT_TIMEOUT 设置请求时间 无效 设置apache Timeout 链接超时 无效 最后添加 Fcgid才可以 apache 配置文件 httpd.conf <IfModule mod_fcgid.c>FcgidProcessLifeTime 10000FcgidIOTimeout 1000…

JVM及垃圾回收机制

文章目录 1、JVM组成&#xff1f;各部分作用&#xff1f;1.1 类加载器&#xff08;Class Loaders&#xff09;1.2 运行时数据区&#xff08;Runtime Data Area&#xff09;1.3 执行引擎&#xff08;Execution Engine&#xff09;1.4 本地方法接口&#xff08;Native Interface&…

百度Apollo学习心得:探索自动驾驶技术的前沿之旅

文章目录 前言一、理论学习与实践结合二、多方资源的整合利用三、团队合作与交流分享四、持续学习与创新思维总结 前言 百度Apollo是一项引领自动驾驶技术发展的开放平台&#xff0c;通过深度学习、感知与决策、定位与控制等关键技术&#xff0c;为开发者提供了丰富的工具和资…

按钮权限控制

搜索关键字&#xff1a; 自定义指令传参| "自定义指令""dataset"|自定义指令dataset| "Vue""directives"|vue按钮权限实现 1、完整代码&#xff1a; <template> <div> <el-breadcrumb separator-class"el-icon…

淘宝免费爬虫数据 商品详情数据 商品销售额销量API

场景&#xff1a;一个宽敞明亮的办公室&#xff0c;一位公司高管坐在办公桌前。 高管&#xff08;自言自语&#xff09;&#xff1a;淘宝&#xff0c;这个平台上商品真是琳琅满目&#xff0c;应该有不少销售数据吧。我该怎么利用这些数据呢&#xff1f; 突然&#xff0c;房间…

Oracle跨库访问DBLINK

1. DBLINK的介绍 Oracle在进行跨库访问时&#xff0c;可以创建DBLINK实现&#xff0c;比如要将UAT的表数据灌入开发环境&#xff0c;则可以使用UAT库为数据源&#xff0c;通过DBLINK实现将查出的数据灌入开发库。 简而言之就是在当前数据库中访问另一个数据库中的表中的数据 2…

github gitee go开发 热门开源工具包

目录 高性能go开发建议测试系统字符串flag日志reflect文件IOmath数字runtime远程调用限流注册中心链路跟踪监控日期时间Decimal配置缓存异常开发工具包调试工具分布式调度Json网络net/httphttp clientwebsocketpinguser_agent 并发sync 异步channelcontext异步并发 数据库 存储…

P1052 [NOIP2005 提高组] 过河

[P1052 NOIP2005 提高组] 过河 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 问题描述&#xff1a;给定长度L&#xff0c;和一次可以跳动的长度 s 到 t&#xff0c;给定m个石头的位置&#xff0c;求最少经过多少个石头可以超过L。 思路&#xff1a;如果L很小的话&#xff0…

js中作用域的理解?

1.作用域 作用域&#xff0c;即变量(变量作用域又称上下文)和函数生效(能被访问)的区域或集合 换句话说&#xff0c;作用域决定了代码区块中变量和其他资源的可见性 举个例子 function myFunction() {let inVariable "函数内部变量"; } myFunction();//要先执行这…

网络安全在医疗行业中的重要性

不可否认&#xff0c;现代世界见证了技术和医疗行业的交织&#xff0c;塑造了我们诊断、治疗和管理健康状况的新方式。随着电子健康记录取代纸质文件&#xff0c;远程医疗缩短了患者和医疗服务提供者之间的距离&#xff0c;数字化转型既是福音&#xff0c;也是挑战。最近的全球…

Hightopo 使用心得(6)- 3D场景环境配置(天空球,雾化,辉光,景深)

在前一篇文章《Hightopo 使用心得&#xff08;5&#xff09;- 动画的实现》中&#xff0c;我们将一个直升机模型放到了3D场景中。同时&#xff0c;还利用动画实现了让该直升机围绕山体巡逻。在这篇文章中&#xff0c;我们将对上一篇的场景进行一些环境上的丰富与美化。让场景更…