前面分享过一个算法《音频增益响度分析 ReplayGain 附完整C代码示例》
主要用于评估一定长度音频的音量强度,
而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法。
不过在项目实测的时候,其实真的很难定标准,
到底在什么样的环境下,要增大音量,还是降低。
在通讯行业一般的做法就是采用静音检测,
一旦检测为静音或者噪音,则不做处理,反之通过一定的策略进行处理。
这里就涉及到两个算法,一个是静音检测,一个是音频增益。
增益其实没什么好说的,类似于数据归一化拉伸的做法。
静音检测 在WebRTC中 是采用计算GMM (Gaussian Mixture Model,高斯混合模型)进行特征提取的。
在很长一段时间里面,音频特征 有3个主要的方法,
GMM ,Spectrogram (声谱图), MFCC 即 Mel-Frequency Cepstrum(Mel频率倒谱)
恕我直言,GMM 提取的特征,其鲁棒性 不如后两者。
也不多做介绍,感兴趣的同学,翻翻 维基百科 ,补补课。
当然在实际使用算法时,会由此延伸出来一些小技巧。
例如,用静音检测 来做音频裁剪,或者搭配音频增益做一些音频增强之类的操作。
自动增益在WebRTC 源代码文件是:analog_agc.c 和 digital_agc.c
静音检测 源代码文件是: webrtc_vad.c
这个命名,有一定的历史原因了。
经过梳理后,
增益算法为 agc.c agc.h
静音检测为 vad.c vad.h
增益算法的完整示例代码:
#include <stdio.h> #include <stdlib.h> #include <stdint.h> //采用https://github.com/mackron/dr_libs/blob/master/dr_wav.h 解码 #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include "agc.h"#ifndef nullptr #define nullptr 0 #endif#ifndef MIN #define MIN(A, B) ((A) < (B) ? (A) : (B)) #endif//写wav文件 void wavWrite_int16(char *filename, int16_t *buffer, size_t sampleRate, size_t totalSampleCount) {drwav_data_format format = {};format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes.format.channels = 1;format.sampleRate = (drwav_uint32) sampleRate;format.bitsPerSample = 16;drwav *pWav = drwav_open_file_write(filename, &format);if (pWav) {drwav_uint64 samplesWritten = drwav_write(pWav, totalSampleCount, buffer);drwav_uninit(pWav);if (samplesWritten != totalSampleCount) {fprintf(stderr, "ERROR\n");exit(1);}} }//读取wav文件 int16_t *wavRead_int16(char *filename, uint32_t *sampleRate, uint64_t *totalSampleCount) {unsigned int channels;int16_t *buffer = drwav_open_and_read_file_s16(filename, &channels, sampleRate, totalSampleCount);if (buffer == nullptr) {printf("读取wav文件失败.");}//仅仅处理单通道音频if (channels != 1) {drwav_free(buffer);buffer = nullptr;*sampleRate = 0;*totalSampleCount = 0;}return buffer; }//分割路径函数 void splitpath(const char *path, char *drv, char *dir, char *name, char *ext) {const char *end;const char *p;const char *s;if (path[0] && path[1] == ':') {if (drv) {*drv++ = *path++;*drv++ = *path++;*drv = '\0';}} else if (drv)*drv = '\0';for (end = path; *end && *end != ':';)end++;for (p = end; p > path && *--p != '\\' && *p != '/';)if (*p == '.') {end = p;break;}if (ext)for (s = end; (*ext = *s++);)ext++;for (p = end; p > path;)if (*--p == '\\' || *p == '/') {p++;break;}if (name) {for (s = p; s < end;)*name++ = *s++;*name = '\0';}if (dir) {for (s = path; s < p;)*dir++ = *s++;*dir = '\0';} }int agcProcess(int16_t *buffer, uint32_t sampleRate, size_t samplesCount, int16_t agcMode) {if (buffer == nullptr) return -1;if (samplesCount == 0) return -1;WebRtcAgcConfig agcConfig;agcConfig.compressionGaindB = 9; // default 9 dBagcConfig.limiterEnable = 1; // default kAgcTrue (on)agcConfig.targetLevelDbfs = 3; // default 3 (-3 dBOv)int minLevel = 0;int maxLevel = 255;size_t samples = MIN(160, sampleRate / 100);if (samples == 0) return -1;const int maxSamples = 320;int16_t *input = buffer;size_t nTotal = (samplesCount / samples);void *agcInst = WebRtcAgc_Create();if (agcInst == NULL) return -1;int status = WebRtcAgc_Init(agcInst, minLevel, maxLevel, agcMode, sampleRate);if (status != 0) {printf("WebRtcAgc_Init fail\n");WebRtcAgc_Free(agcInst);return -1;}status = WebRtcAgc_set_config(agcInst, agcConfig);if (status != 0) {printf("WebRtcAgc_set_config fail\n");WebRtcAgc_Free(agcInst);return -1;}size_t num_bands = 1;int inMicLevel, outMicLevel = -1;int16_t out_buffer[maxSamples];int16_t *out16 = out_buffer;uint8_t saturationWarning = 1; //是否有溢出发生,增益放大以后的最大值超过了65536int16_t echo = 0; //增益放大是否考虑回声影响for (int i = 0; i < nTotal; i++) {inMicLevel = 0;int nAgcRet = WebRtcAgc_Process(agcInst, (const int16_t *const *) &input, num_bands, samples,(int16_t *const *) &out16, inMicLevel, &outMicLevel, echo,&saturationWarning);if (nAgcRet != 0) {printf("failed in WebRtcAgc_Process\n");WebRtcAgc_Free(agcInst);return -1;}memcpy(input, out_buffer, samples * sizeof(int16_t));input += samples;}WebRtcAgc_Free(agcInst);return 1; }void auto_gain(char *in_file, char *out_file) {//音频采样率uint32_t sampleRate = 0;//总音频采样数uint64_t inSampleCount = 0;int16_t *inBuffer = wavRead_int16(in_file, &sampleRate, &inSampleCount);//如果加载成功if (inBuffer != nullptr) {// kAgcModeAdaptiveAnalog 模拟音量调节// kAgcModeAdaptiveDigital 自适应增益// kAgcModeFixedDigital 固定增益 agcProcess(inBuffer, sampleRate, inSampleCount, kAgcModeAdaptiveDigital);wavWrite_int16(out_file, inBuffer, sampleRate, inSampleCount);free(inBuffer);} }int main(int argc, char *argv[]) {printf("WebRTC Automatic Gain Control\n");printf("博客:http://cpuimage.cnblogs.com/\n");printf("音频自动增益\n");if (argc < 2)return -1;char *in_file = argv[1];char drive[3];char dir[256];char fname[256];char ext[256];char out_file[1024];splitpath(in_file, drive, dir, fname, ext);sprintf(out_file, "%s%s%s_out%s", drive, dir, fname, ext);auto_gain(in_file, out_file);printf("按任意键退出程序 \n");getchar();return 0; }
静音检测完整示例代码:
#include <stdio.h> #include <stdlib.h> #include <stdint.h> //采用https://github.com/mackron/dr_libs/blob/master/dr_wav.h 解码 #define DR_WAV_IMPLEMENTATION#include "dr_wav.h" #include "vad.h"#ifndef nullptr #define nullptr 0 #endif#ifndef MIN #define MIN(A, B) ((A) < (B) ? (A) : (B)) #endif#ifndef MAX #define MAX(A, B) ((A) > (B) ? (A) : (B)) #endif//读取wav文件 int16_t *wavRead_int16(char *filename, uint32_t *sampleRate, uint64_t *totalSampleCount) {unsigned int channels;int16_t *buffer = drwav_open_and_read_file_s16(filename, &channels, sampleRate, totalSampleCount);if (buffer == nullptr) {printf("读取wav文件失败.");}//仅仅处理单通道音频if (channels != 1) {drwav_free(buffer);buffer = nullptr;*sampleRate = 0;*totalSampleCount = 0;}return buffer; }int vadProcess(int16_t *buffer, uint32_t sampleRate, size_t samplesCount, int16_t vad_mode, int per_ms_frames) {if (buffer == nullptr) return -1;if (samplesCount == 0) return -1;// kValidRates : 8000, 16000, 32000, 48000// 10, 20 or 30 ms framesper_ms_frames = MAX(MIN(30, per_ms_frames), 10);size_t samples = sampleRate * per_ms_frames / 1000;if (samples == 0) return -1;int16_t *input = buffer;size_t nTotal = (samplesCount / samples);void *vadInst = WebRtcVad_Create();if (vadInst == NULL) return -1;int status = WebRtcVad_Init(vadInst);if (status != 0) {printf("WebRtcVad_Init fail\n");WebRtcVad_Free(vadInst);return -1;}status = WebRtcVad_set_mode(vadInst, vad_mode);if (status != 0) {printf("WebRtcVad_set_mode fail\n");WebRtcVad_Free(vadInst);return -1;}printf("Activity : \n");for (int i = 0; i < nTotal; i++) {int nVadRet = WebRtcVad_Process(vadInst, sampleRate, input, samples);if (nVadRet == -1) {printf("failed in WebRtcVad_Process\n");WebRtcVad_Free(vadInst);return -1;} else {// output resultprintf(" %d \t", nVadRet);}input += samples;}printf("\n");WebRtcVad_Free(vadInst);return 1; }void vad(char *in_file) {//音频采样率uint32_t sampleRate = 0;//总音频采样数uint64_t inSampleCount = 0;int16_t *inBuffer = wavRead_int16(in_file, &sampleRate, &inSampleCount);//如果加载成功if (inBuffer != nullptr) {// Aggressiveness mode (0, 1, 2, or 3)int16_t mode = 1;int per_ms = 30;vadProcess(inBuffer, sampleRate, inSampleCount, mode, per_ms);free(inBuffer);} }int main(int argc, char *argv[]) {printf("WebRTC Voice Activity Detector\n");printf("博客:http://cpuimage.cnblogs.com/\n");printf("静音检测\n");if (argc < 2)return -1;char *in_file = argv[1];vad(in_file);printf("按任意键退出程序 \n");getchar();return 0; }
自动增益项目地址:https://github.com/cpuimage/WebRTC_AGC
具体流程为:
加载wav(拖放wav文件到可执行文件上)->增益处理->保存为_out.wav文件
静音检测项目地址:https://github.com/cpuimage/WebRTC_VAD
具体流程为:
加载wav(拖放wav文件到可执行文件上)->输出静音检测结果
备注 :1 为非静音,0 为静音
该注意的地方和参数,见代码注释。
用cmake即可进行编译示例代码,详情见CMakeLists.txt。
若有其他相关问题或者需求也可以邮件联系俺探讨。
邮箱地址是:
gaozhihan@vip.qq.com