本篇内容包括:数据库瓶颈、分库分表以及分库分表相关问题
一、数据库瓶颈
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
1、IO瓶颈
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈
第一种:SQL问题,如SQL中包含 join,group by,order by,非索引字段条件查询等,增加 CPU 运算的操作 -> SQL优化,建立合适的索引,在业务 Service 层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表
二、分库分表
1、水平分库
- 概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
- 结果:
- 每个库的结构都一样;
- 每个库的数据都不一样,没有交集;
- 所有库的并集是全量数据;
场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
分析:库多了,io和cpu的压力自然可以成倍缓解。
2、水平分表
- 概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
- 结果:
- 每个表的结构都一样;
- 每个表的数据都不一样,没有交集;
- 所有表的并集是全量数据;
场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。
分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
3、垂直分库
- 概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
- 结果:
- 每个库的结构都不一样;
- 每个库的数据也不一样,没有交集;
- 所有库的并集是全量数据;
场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
4、垂直分表
- 概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
- 结果:
- 每个表的结构都不一样;
- 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
- 所有表的并集是全量数据;
场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。
三、分库分表相关问题
1、分表后的ID怎么保证唯一性的呢?
因为我们主键默认都是自增的,那么分表之后的主键在不同表就肯定会有冲突了。有几个办法考虑:
- 设定步长,比如1-1024张表我们分别设定1-1024的基础步长,这样主键落到不同的表就不会冲突了。
- 分布式ID,自己实现一套分布式ID生成算法或者使用开源的比如雪花算法这种
- 分表后不使用主键作为查询依据,而是每张表单独新增一个字段作为唯一主键使用,比如订单表订单号是唯一的,不管最终落在哪张表都基于订单号作为查询依据,更新也一样。
2、分表后非sharding_key的查询怎么处理呢?
- 可以做一个mapping表,比如这时候商家要查询订单列表怎么办呢?不带user_id查询的话你总不能扫全表吧?所以我们可以做一个映射关系表,保存商家和用户的关系,查询的时候先通过商家查询到用户列表,再通过user_id去查询。
- 打宽表,一般而言,商户端对数据实时性要求并不是很高,比如查询订单列表,可以把订单表同步到离线(实时)数仓,再基于数仓去做成一张宽表,再基于其他如es提供查询服务。
- 数据量不是很大的话,比如后台的一些查询之类的,也可以通过多线程扫表,然后再聚合结果的方式来做。或者异步的形式也是可以的。