【VOC2007+2012】
数据集地址:https://pjreddie.com/projects/pascal-voc-dataset-mirror/
PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,用于构建和评估用于图像分类(Classification),检测(Object Detection),和分割(Segmentation)的算法,从2005年到2012年每年都会举行一场图像识别challenge。
数据集类别(20类):
Person: person;Animal: bird, cat, cow, dog, horse, sheep;Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train;Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor;
数据集目录(VOC2007为例,只列出目标检测所用到的):
-VOCdevkit-VOC2007-Annotations #存放xml标注文件,每个xml文件都对应于JPEGImages文件夹的一张图片,文件命名格式为:<图片编号.xml>-JPEGImages #存放训练图片和测试图片,文件命名格式为:<图片编号.jpg>-ImageSets #存放的是challenge对应的图像数据-Main #存放的是图像物体识别的数据,包含下列4个文件,文件内容格式均为:<图片编号>-train.txt #记录训练集所包含的图片编号-test.txt #记录测试集所包含的图片编号-val.txt #记录验证集所包含的图片编号-trainval.txt #记录验证集和训练集所包含的图片编号
把上述目录所列的文件夹建好,接下来制作自己的VOC格式数据集。
【标注工具labelImg】
labelImg软件是一款免费的图像标注工具,常用来为目标检测任务标注数据集。labelImg的安装和使用参考GitHub项目:
https://github.com/tzutalin/labelImggithub.com记录下自己Mac版本的安装过程:
conda activate 环境名称 #可选
pip install pyqt5
pip install libxml2
pip install labelImg
labelImg #运行
【制作自己的数据集】
1.JPEGImages文件夹
搜集并删选出自定类别的图片数据,将所有的.jpg图像文件放入JPEGImages文件夹,命名格式统一为“%6d.jpg”,(000001.jpg)
# -*- coding:utf8 -*-'''批量重命名文件夹中的图片文件'''
import os
class BatchRename():def __init__(self):self.path = './JPEGImages' # 修改成自己JPEGImages文件夹路径def rename(self):filelist = os.listdir(self.path)total_num = len(filelist)i = 1n = 6for item in filelist:if item.endswith('.jpg'):n = 6 - len(str(i))src = os.path.join(os.path.abspath(self.path), item)dst = os.path.join(os.path.abspath(self.path), str(0) * n + str(i) + '.jpg')try:os.rename(src, dst)print'converting %s to %s ...' % (src, dst)i = i + 1except:continueprint'total %d to rename & converted %d jpgs' % (total_num, i)
if __name__ == '__main__':demo = BatchRename()demo.rename()
2.Annotations文件夹
使用labelImg工具标注图片中的目标,选择好图片存放文件夹(JPEGImages)和标注文件夹(Annotations),接下来就是无止尽的标注。。。
3.ImageSets文件夹
在ImageSets文件夹下新建Main文件夹,执行下面代码生成test.txt , train.txt , trainval.txt , val.txt。
# -*- coding:utf-8 -*-import os
import random trainval_percent = 0.7 # 自己设定(训练集+验证集)所占(训练集+验证集+测试集)的比重
train_percent = 0.8 # 自己设定(训练集)所占(训练集+验证集)的比重
xmlfilepath = 'Annotations/' #注意自己地址是否正确
txtsavepath = 'ImageSets/Main' #注意自己地址是否正确
total_xml = os.listdir(xmlfilepath) num = len(total_xml)
list = range(num)
tv = int(num*trainval_percent)
tr = int(tv*train_percent)
trainval = random.sample(list,tv)
train = random.sample(trainval,tr) ftrainval = open(txtsavepath+'/trainval.txt', 'w')
ftest = open(txtsavepath+'/test.txt', 'w')
ftrain = open(txtsavepath+'/train.txt', 'w')
fval = open(txtsavepath+'/val.txt', 'w') for i in list: name = total_xml[i][:-4]+'n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
print('Done')
【数据集常用代码】
1.批量修改xml标签
import os
import xml.etree.ElementTree as ET#程序功能:批量修改VOC数据集中xml标签文件的标签名称
def changelabelname(inputpath):listdir = os.listdir(inputpath)for file in listdir:if file.endswith('xml'):file = os.path.join(inputpath,file)tree = ET.parse(file)root = tree.getroot()for object1 in root.findall('object'):for sku in object1.findall('name'): #查找需要修改的名称if (sku.text == 'type2_03'): #‘preName’为修改前的名称sku.text = 'type2_02' #‘TESTNAME’为修改后的名称tree.write(file,encoding='utf-8') #写进原始的xml文件并避免原始xml中文字符乱码else:passelse:passif __name__ == '__main__':inputpath = 'anno/' #此处替换为自己的路径changelabelname(inputpath)
2.批量统计每个类别的图片数量及目标数量
import re
import os
import xml.etree.ElementTree as ETclass1 = 'type1_01' #根据自己的类别修改(以下要均修改)
class2 = 'type2_02'
class3 = 'type2_03'
class4 = 'type1_02'
'''
class20 = 'tvmonitor'
'''
annotation_folder = './Annotations/' # 改为自己标签文件夹的路径
# annotation_folder = '/home/.../VOC2007/Annotations/'
list = os.listdir(annotation_folder)def file_name(file_dir):L = []for root, dirs, files in os.walk(file_dir):for file in files:if os.path.splitext(file)[1] == '.xml':L.append(os.path.join(root, file))return Ltotal_number1 = 0
total_number2 = 0
total_number3 = 0
total_number4 = 0
'''
total_number20 = 0
'''
total = 0
total_pic = 0pic_num1 = 0
pic_num2 = 0
pic_num3 = 0
pic_num4 = 0
'''
pic_num20 = 0
'''flag1 = 0
flag2 = 0
flag3 = 0
flag4 = 0
'''
flag20 = 0
'''xml_dirs = file_name(annotation_folder)for i in range(0, len(xml_dirs)):print(xml_dirs[i])annotation_file = open(xml_dirs[i]).read()root = ET.fromstring(annotation_file)total_pic = total_pic + 1for obj in root.findall('object'):label = obj.find('name').textif label == class1:total_number1 = total_number1 + 1flag1 = 1total = total + 1if label == class2:total_number2 = total_number2 + 1flag2 = 1total = total + 1if label == class3:total_number3 = total_number3 + 1flag3 = 1total = total + 1if label == class4:total_number4 = total_number4 + 1flag4 = 1total = total + 1'''if label == class20:total_number20=total_number20+1flag20=1total = total + 1'''if flag1 == 1:pic_num1 = pic_num1 + 1# print("pic number:", pic_num1)flag1 = 0if flag2 == 1:pic_num2 = pic_num2 + 1flag2 = 0if flag3 == 1:pic_num3 = pic_num3 + 1flag3 = 0if flag4 == 1:pic_num4 = pic_num4 + 1flag4 = 0'''if flag20==1:pic_num20=pic_num20+1flag20=0'''print(class1, pic_num1, total_number1)
print(class2, pic_num2, total_number2)
print(class3, pic_num3, total_number3)
print(class4, pic_num4, total_number4)
'''
print(class20,pic_num20, total_number20)
'''print("total", total_pic, total)
3.图片批量增广(水平、上下翻转等)
"""
图片批量翻转
"""
from PIL import Image
import os
import os.path# 指明被遍历的文件夹
rootdir = r'Rust_01/'
for parent, dirnames, filenames in os.walk(rootdir): # 遍历图片for filename in filenames:print('parent is :' + parent)print('filename is :' + filename)currentPath = os.path.join(parent, filename)print('the fulll name of the file is :' + currentPath)im = Image.open(currentPath)# Image.FLIP_LEFT_RIGHT,表示将图像左右翻转out = im.transpose(Image.FLIP_LEFT_RIGHT)# Image.FLIP_TOP_BOTTOM,表示将图像上下翻转# out = im.transpose(Image.FLIP_TOP_BOTTOM)# Image.ROTATE_90,表示将图像逆时针旋转90°# out = im.transpose(Image.ROTATE_90)# Image.ROTATE_180,表示将图像逆时针旋转180°# out = im.transpose(Image.ROTATE_180)# Image.ROTATE_270,表示将图像逆时针旋转270°# out = im.transpose(Image.ROTATE_270)# Image.TRANSPOSE,表示将图像进行转置(相当于顺时针旋转90°)# out = im.transpose(Image.TRANSPOSE)# Image.TRANSVERSE,表示将图像进行转置,再水平翻转# out = im.transpose(Image.TRANSVERSE)# 新建文件夹保存翻转后图片newname = r"Rust_01/" + '' + filenameout.save(newname) # 保存结束
说明:研一初学目标检测,本文记录自己制作数据集的过程,以上参考、摘抄于以下文章,推荐阅读。有些代码忘记在哪里借鉴的了,如有读者见到,联系,加入参考链接。
参考:
转载:VOC2007数据集制作 - _harvey - 博客园www.cnblogs.comCSDN-专业IT技术社区-登录blog.csdn.netCSDN-专业IT技术社区-登录blog.csdn.net