Docker概念理解

Docker概念理解

本文非Docker命令大全,而是对Docker的概念、原理等作说明,适合有一定实操经验后来加深理解。

转自:docker从入门到实践

Docker简介

本章将带领你进入 Docker 的世界。

什么是 Docker

用它会带来什么样的好处?

好吧,让我们带着问题开始这神奇之旅。

什么是Docker

Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一个公司内部项目,它是基于 dotCloud 公司多年云服务技术的一次革新,并于 2013 年 3 月以 Apache 2.0 授权协议开源,主要项目代码在 GitHub 上进行维护。Docker 项目后来还加入了 Linux 基金会,并成立推动 开放容器联盟(OCI)。

Docker 自开源后受到广泛的关注和讨论,至今其 GitHub 项目 已经超过 5 万 7 千个星标和一万多个 fork。甚至由于 Docker 项目的火爆,在 2013 年底,dotCloud 公司决定改名为 Docker。Docker 最初是在 Ubuntu 12.04 上开发实现的;Red Hat 则从 RHEL 6.5 开始对 Docker 进行支持;Google 也在其 PaaS 产品中广泛应用 Docker

Docker 使用 Google 公司推出的 Go 语言 进行开发实现,基于 Linux 内核的 cgroup,namespace,以及 OverlayFS 类的 Union FS 等技术,对进程进行封装隔离,属于 操作系统层面的虚拟化技术。由于隔离的进程独立于宿主和其它的隔离的进程,因此也称其为容器。最初实现是基于 LXC,从 0.7 版本以后开始去除 LXC,转而使用自行开发的 libcontainer,从 1.11 版本开始,则进一步演进为使用 runC 和 containerd。

在这里插入图片描述

docker架构

runc 是一个 Linux 命令行工具,用于根据 OCI容器运行时规范 创建和运行容器。

containerd 是一个守护程序,它管理容器生命周期,提供了在一个节点上执行容器和管理镜像的最小功能集。

Docker 在容器的基础上,进行了进一步的封装,从文件系统、网络互联到进程隔离等等,极大的简化了容器的创建和维护。使得 Docker 技术比虚拟机技术更为轻便、快捷。

下面的图片比较了 Docker 和传统虚拟化方式的不同之处。传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整操作系统,在该系统上再运行所需应用进程;而容器内的应用进程直接运行于宿主的内核,容器内没有自己的内核,而且也没有进行硬件虚拟。因此容器要比传统虚拟机更为轻便。

在这里插入图片描述

传统虚拟化

在这里插入图片描述

docker

为什么要用Docker

作为一种新兴的虚拟化方式,Docker 跟传统的虚拟化方式相比具有众多的优势。

更高效的利用系统资源

由于容器不需要进行硬件虚拟以及运行完整操作系统等额外开销,Docker 对系统资源的利用率更高。无论是应用执行速度、内存损耗或者文件存储速度,都要比传统虚拟机技术更高效。因此,相比虚拟机技术,一个相同配置的主机,往往可以运行更多数量的应用。

更快速的启动时间

传统的虚拟机技术启动应用服务往往需要数分钟,而 Docker 容器应用,由于直接运行于宿主内核,无需启动完整的操作系统,因此可以做到秒级、甚至毫秒级的启动时间。大大的节约了开发、测试、部署的时间。

一致的运行环境

开发过程中一个常见的问题是环境一致性问题。由于开发环境、测试环境、生产环境不一致,导致有些 bug 并未在开发过程中被发现。而 Docker 的镜像提供了除内核外完整的运行时环境,确保了应用运行环境一致性,从而不会再出现 「这段代码在我机器上没问题啊」 这类问题。

持续交付和部署

对开发和运维(DevOps)人员来说,最希望的就是一次创建或配置,可以在任意地方正常运行。

使用 Docker 可以通过定制应用镜像来实现持续集成、持续交付、部署。开发人员可以通过 Dockerfile 来进行镜像构建,并结合 持续集成(Continuous Integration) 系统进行集成测试,而运维人员则可以直接在生产环境中快速部署该镜像,甚至结合 持续部署(Continuous Delivery/Deployment) 系统进行自动部署。

而且使用 Dockerfile 使镜像构建透明化,不仅仅开发团队可以理解应用运行环境,也方便运维团队理解应用运行所需条件,帮助更好的生产环境中部署该镜像。

更轻松的迁移

由于 Docker 确保了执行环境的一致性,使得应用的迁移更加容易。Docker 可以在很多平台上运行,无论是物理机、虚拟机、公有云、私有云,甚至是笔记本,其运行结果是一致的。因此用户可以很轻易的将在一个平台上运行的应用,迁移到另一个平台上,而不用担心运行环境的变化导致应用无法正常运行的情况。

更轻松的维护和扩展

Docker 使用的分层存储以及镜像的技术,使得应用重复部分的复用更为容易,也使得应用的维护更新更加简单,基于基础镜像进一步扩展镜像也变得非常简单。此外,Docker 团队同各个开源项目团队一起维护了一大批高质量的 官方镜像,既可以直接在生产环境使用,又可以作为基础进一步定制,大大的降低了应用服务的镜像制作成本。

对比传统虚拟机总结

特性容器虚拟机
启动秒级分钟级
硬盘使用一般为MB一般为GB
性能接近原生弱于
系统支持量单机支持上千个容器一般几十个

基本概念

Docker 包括三个基本概念

  • 镜像Image
  • 容器Container
  • 仓库Repository

理解了这三个概念,就理解了 Docker 的整个生命周期。

镜像

我们都知道,操作系统分为 内核用户空间。对于 Linux 而言,内核启动后,会挂载 root 文件系统为其提供用户空间支持。而 Docker 镜像Image),就相当于是一个 root 文件系统。比如官方镜像 ubuntu:18.04 就包含了完整的一套 Ubuntu 18.04 最小系统的 root 文件系统。

Docker 镜像 是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像 不包含 任何动态数据,其内容在构建之后也不会被改变。

分层存储

因为镜像包含操作系统完整的 root 文件系统,其体积往往是庞大的,因此在 Docker 设计时,就充分利用 Union FS 的技术,将其设计为分层存储的架构。所以严格来说,镜像并非是像一个 ISO 那样的打包文件,镜像只是一个虚拟的概念,其实际体现并非由一个文件组成,而是由一组文件系统组成,或者说,由多层文件系统联合组成。

镜像构建时,会一层层构建,前一层是后一层的基础。每一层构建完就不会再发生改变,后一层上的任何改变只发生在自己这一层。比如,删除前一层文件的操作,实际不是真的删除前一层的文件,而是仅在当前层标记为该文件已删除。在最终容器运行的时候,虽然不会看到这个文件,但是实际上该文件会一直跟随镜像。因此,在构建镜像的时候,需要额外小心,每一层尽量只包含该层需要添加的东西,任何额外的东西应该在该层构建结束前清理掉。

分层存储的特征还使得镜像的复用、定制变的更为容易。甚至可以用之前构建好的镜像作为基础层,然后进一步添加新的层,以定制自己所需的内容,构建新的镜像。

关于镜像构建,将会在后续相关章节中做进一步的讲解。

容器

镜像(Image)和容器(Container)的关系,就像是面向对象程序设计中的 实例 一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。

容器的实质是进程,但与直接在宿主执行的进程不同,容器进程运行于属于自己的独立的 命名空间。因此容器可以拥有自己的 root 文件系统、自己的网络配置、自己的进程空间,甚至自己的用户 ID 空间。容器内的进程是运行在一个隔离的环境里,使用起来,就好像是在一个独立于宿主的系统下操作一样。这种特性使得容器封装的应用比直接在宿主运行更加安全。也因为这种隔离的特性,很多人初学 Docker 时常常会混淆容器和虚拟机。

前面讲过镜像使用的是分层存储,容器也是如此。每一个容器运行时,是以镜像为基础层,在其上创建一个当前容器的存储层,我们可以称这个为容器运行时读写而准备的存储层为 容器存储层

容器存储层的生存周期和容器一样,容器消亡时,容器存储层也随之消亡。因此,任何保存于容器存储层的信息都会随容器删除而丢失。

按照 Docker 最佳实践的要求,容器不应该向其存储层内写入任何数据,容器存储层要保持无状态化。所有的文件写入操作,都应该使用 数据卷(Volume)、或者 绑定宿主目录,在这些位置的读写会跳过容器存储层,直接对宿主(或网络存储)发生读写,其性能和稳定性更高。

数据卷的生存周期独立于容器,容器消亡,数据卷不会消亡。因此,使用数据卷后,容器删除或者重新运行之后,数据却不会丢失。

仓库

镜像构建完成后,可以很容易的在当前宿主机上运行,但是,如果需要在其它服务器上使用这个镜像,我们就需要一个集中的存储、分发镜像的服务,Docker Registry 就是这样的服务。

一个 Docker Registry 中可以包含多个 仓库Repository);每个仓库可以包含多个 标签Tag);每个标签对应一个镜像。

通常,一个仓库会包含同一个软件不同版本的镜像,而标签就常用于对应该软件的各个版本。我们可以通过 <仓库名>:<标签> 的格式来指定具体是这个软件哪个版本的镜像。如果不给出标签,将以 latest 作为默认标签。

以 Ubuntu 镜像 为例,ubuntu 是仓库的名字,其内包含有不同的版本标签,如,16.04, 18.04。我们可以通过 ubuntu:16.04,或者 ubuntu:18.04 来具体指定所需哪个版本的镜像。如果忽略了标签,比如 ubuntu,那将视为 ubuntu:latest

仓库名经常以 两段式路径 形式出现,比如 jwilder/nginx-proxy,前者往往意味着 Docker Registry 多用户环境下的用户名,后者则往往是对应的软件名。但这并非绝对,取决于所使用的具体 Docker Registry 的软件或服务。

Docker Registry 公开服务

Docker Registry 公开服务是开放给用户使用、允许用户管理镜像的 Registry 服务。一般这类公开服务允许用户免费上传、下载公开的镜像,并可能提供收费服务供用户管理私有镜像。

最常使用的 Registry 公开服务是官方的 Docker Hub,这也是默认的 Registry,并拥有大量的高质量的 官方镜像。除此以外,还有 Red Hat 的 Quay.io;Google 的 Google Container Registry,Kubernetes 的镜像使用的就是这个服务;代码托管平台 GitHub 推出的 ghcr.io。

由于某些原因,在国内访问这些服务可能会比较慢。国内的一些云服务商提供了针对 Docker Hub 的镜像服务(Registry Mirror),这些镜像服务被称为 加速器。常见的有 阿里云加速器、DaoCloud 加速器 等。使用加速器会直接从国内的地址下载 Docker Hub 的镜像,比直接从 Docker Hub 下载速度会提高很多。在 安装 Docker 一节中有详细的配置方法。

国内也有一些云服务商提供类似于 Docker Hub 的公开服务。比如 网易云镜像服务、DaoCloud 镜像市场、阿里云镜像库 等。

私有 Docker Registry

除了使用公开服务外,用户还可以在本地搭建私有 Docker Registry。Docker 官方提供了 Docker Registry 镜像,可以直接使用做为私有 Registry 服务。在 私有仓库 一节中,会有进一步的搭建私有 Registry 服务的讲解。

开源的 Docker Registry 镜像只提供了 Docker Registry API 的服务端实现,足以支持 docker 命令,不影响使用。但不包含图形界面,以及镜像维护、用户管理、访问控制等高级功能。

除了官方的 Docker Registry 外,还有第三方软件实现了 Docker Registry API,甚至提供了用户界面以及一些高级功能。比如,Harbor 和 Sonatype Nexus。

利用commit理解镜像构成

注意: docker commit 命令除了学习之外,还有一些特殊的应用场合,比如被入侵后保存现场等。但是,不要使用 docker commit 定制镜像,定制镜像应该使用 Dockerfile 来完成。如果你想要定制镜像请查看下一小节。

镜像是容器的基础,每次执行 docker run 的时候都会指定哪个镜像作为容器运行的基础。在之前的例子中,我们所使用的都是来自于 Docker Hub 的镜像。直接使用这些镜像是可以满足一定的需求,而当这些镜像无法直接满足需求时,我们就需要定制这些镜像。接下来的几节就将讲解如何定制镜像。

回顾一下之前我们学到的知识,镜像是多层存储,每一层是在前一层的基础上进行的修改;而容器同样也是多层存储,是在以镜像为基础层,在其基础上加一层作为容器运行时的存储层。

现在让我们以定制一个 Web 服务器为例子,来讲解镜像是如何构建的。

docker run --name webserver -d -p 80:80 nginx

这条命令会用 nginx 镜像启动一个容器,命名为 webserver,并且映射了 80 端口,这样我们可以用浏览器去访问这个 nginx 服务器。

如果是在本机运行的 Docker,那么可以直接访问:http://localhost ,如果是在虚拟机、云服务器上安装的 Docker,则需要将 localhost 换为虚拟机地址或者实际云服务器地址。

直接用浏览器访问的话,我们会看到默认的 Nginx 欢迎页面。

在这里插入图片描述

现在,假设我们非常不喜欢这个欢迎页面,我们希望改成欢迎 Docker 的文字,我们可以使用 docker exec 命令进入容器,修改其内容。

$ docker exec -it webserver bash
root@3729b97e8226:/# echo '<h1>Hello, Docker!</h1>' > /usr/share/nginx/html/index.html
root@3729b97e8226:/# exit
exit

我们以交互式终端方式进入 webserver 容器,并执行了 bash 命令,也就是获得一个可操作的 Shell。

然后,我们用 <h1>Hello, Docker!</h1> 覆盖了 /usr/share/nginx/html/index.html 的内容。

现在我们再刷新浏览器的话,会发现内容被改变了。

在这里插入图片描述

我们修改了容器的文件,也就是改动了容器的存储层。我们可以通过 docker diff 命令看到具体的改动。

$ docker diff webserver
C /root
A /root/.bash_history
C /run
C /usr
C /usr/share
C /usr/share/nginx
C /usr/share/nginx/html
C /usr/share/nginx/html/index.html
C /var
C /var/cache
C /var/cache/nginx
A /var/cache/nginx/client_temp
A /var/cache/nginx/fastcgi_temp
A /var/cache/nginx/proxy_temp
A /var/cache/nginx/scgi_temp
A /var/cache/nginx/uwsgi_temp

现在我们定制好了变化,我们希望能将其保存下来形成镜像。

要知道,当我们运行一个容器的时候(如果不使用卷的话),我们做的任何文件修改都会被记录于容器存储层里。而 Docker 提供了一个 docker commit 命令,可以将容器的存储层保存下来成为镜像。换句话说,就是在原有镜像的基础上,再叠加上容器的存储层,并构成新的镜像。以后我们运行这个新镜像的时候,就会拥有原有容器最后的文件变化。

docker commit 的语法格式为:

docker commit [选项] <容器ID或容器名> [<仓库名>[:<标签>]]

我们可以用下面的命令将容器保存为镜像:

docker commit \--author "Tao Wang <twang2218@gmail.com>" \--message "修改了默认网页" \webserver \nginx:v2
sha256:07e33465974800ce65751acc279adc6ed2dc5ed4e0838f8b86f0c87aa1795214

其中 --author 是指定修改的作者,而 --message 则是记录本次修改的内容。这点和 git 版本控制相似,不过这里这些信息可以省略留空。

我们可以在 docker image ls 中看到这个新定制的镜像:

docker image ls nginx
REPOSITORY          TAG                 IMAGE ID            CREATED             SIZE
nginx               v2                  07e334659748        9 seconds ago       181.5 MB
nginx               1.11                05a60462f8ba        12 days ago         181.5 MB
nginx               latest              e43d811ce2f4        4 weeks ago         181.5 MB

我们还可以用 docker history 具体查看镜像内的历史记录,如果比较 nginx:latest 的历史记录,我们会发现新增了我们刚刚提交的这一层。

docker history nginx:v2
IMAGE               CREATED             CREATED BY                                      SIZE                COMMENT
07e334659748        54 seconds ago      nginx -g daemon off;                            95 B                修改了默认网页
e43d811ce2f4        4 weeks ago         /bin/sh -c #(nop)  CMD ["nginx" "-g" "daemon    0 B
<missing>           4 weeks ago         /bin/sh -c #(nop)  EXPOSE 443/tcp 80/tcp        0 B
<missing>           4 weeks ago         /bin/sh -c ln -sf /dev/stdout /var/log/nginx/   22 B
<missing>           4 weeks ago         /bin/sh -c apt-key adv --keyserver hkp://pgp.   58.46 MB
<missing>           4 weeks ago         /bin/sh -c #(nop)  ENV NGINX_VERSION=1.11.5-1   0 B
<missing>           4 weeks ago         /bin/sh -c #(nop)  MAINTAINER NGINX Docker Ma   0 B
<missing>           4 weeks ago         /bin/sh -c #(nop)  CMD ["/bin/bash"]            0 B
<missing>           4 weeks ago         /bin/sh -c #(nop) ADD file:23aa4f893e3288698c   123 MB

新的镜像定制好后,我们可以来运行这个镜像。

docker run --name web2 -d -p 81:80 nginx:v2

这里我们命名为新的服务为 web2,并且映射到 81 端口。访问 http://localhost:81 看到结果,其内容应该和之前修改后的 webserver 一样。

至此,我们第一次完成了定制镜像,使用的是 docker commit 命令,手动操作给旧的镜像添加了新的一层,形成新的镜像,对镜像多层存储应该有了更直观的感觉。

慎用docker commit

docker commit 命令虽然可以比较直观的帮助理解镜像分层存储的概念,但是实际环境中并不会这样使用。

首先,如果仔细观察之前的 docker diff webserver 的结果,你会发现除了真正想要修改的 /usr/share/nginx/html/index.html 文件外,由于命令的执行,还有很多文件被改动或添加了。这还仅仅是最简单的操作,如果是安装软件包、编译构建,那会有大量的无关内容被添加进来,将会导致镜像极为臃肿。

此外,使用 docker commit 意味着所有对镜像的操作都是黑箱操作,生成的镜像也被称为 黑箱镜像,换句话说,就是除了制作镜像的人知道执行过什么命令、怎么生成的镜像,别人根本无从得知。而且,即使是这个制作镜像的人,过一段时间后也无法记清具体的操作。这种黑箱镜像的维护工作是非常痛苦的。

而且,回顾之前提及的镜像所使用的分层存储的概念,除当前层外,之前的每一层都是不会发生改变的,换句话说,任何修改的结果仅仅是在当前层进行标记、添加、修改,而不会改动上一层。如果使用 docker commit 制作镜像,以及后期修改的话,每一次修改都会让镜像更加臃肿一次,所删除的上一层的东西并不会丢失,会一直如影随形的跟着这个镜像,即使根本无法访问到。这会让镜像更加臃肿。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532491.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux内存背后的那些神秘往事

Linux内存背后的那些神秘往事 作者&#xff1a;大白斯基&#xff08;公众号&#xff1a;后端研究所&#xff09; 转自&#xff1a;https://mp.weixin.qq.com/s/l_YdpyHht5Ayvrc7LFZNIA 前言 大家好&#xff0c;我的朋友们&#xff01; CPU、IO、磁盘、内存可以说是影响计算机…

精简CUDA教程——CUDA Driver API

精简CUDA教程——CUDA Driver API tensorRT从零起步迈向高性能工业级部署&#xff08;就业导向&#xff09; 课程笔记&#xff0c;讲师讲的不错&#xff0c;可以去看原视频支持下。 Driver API概述 CUDA 的多级 API CUDA 的 API 有多级&#xff08;下图&#xff09;&#xff…

CUDA编程入门极简教程

CUDA编程入门极简教程 转自&#xff1a;CUDA编程入门极简教程 作者&#xff1a;小小将 前言 2006年&#xff0c;NVIDIA公司发布了CUDA&#xff0c;CUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型&#xff0c;基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地…

精简CUDA教程——CUDA Runtime API

精简CUDA教程——CUDA Runtime API tensorRT从零起步迈向高性能工业级部署&#xff08;就业导向&#xff09; 课程笔记&#xff0c;讲师讲的不错&#xff0c;可以去看原视频支持下。 Runtime API 概述 环境 图中可以看到&#xff0c;Runtime API 是基于 Driver API 之上开发的…

TensorRT ONNX 基础

TensorRT ONNX 基础 tensorRT从零起步迈向高性能工业级部署&#xff08;就业导向&#xff09; 课程笔记&#xff0c;讲师讲的不错&#xff0c;可以去看原视频支持下。 概述 TensorRT 的核心在于对模型算子的优化&#xff08;合并算子、利用当前 GPU 特性选择特定的核函数等多种…

mmdetection tools工具梳理

mmdetection tools工具梳理 mmdetection 是一个非常好用的开源目标检测框架&#xff0c;我们可以用它方便地训练自己的目标检测模型&#xff0c;mmdetection 项目仓库提供许多实用的工具来实现帮助我们进行各种测试。本篇将梳理以下 mmdetection 项目仓库 tools 目录下的各种实…

TensorRT ONNX 基础(续)

TensorRT ONNX 基础&#xff08;续&#xff09; PyTorch正确导出ONNX 几条推荐的原则&#xff0c;可以减少潜在的错误&#xff1a; 对于任何使用到 shape、size 返回值的参数时&#xff0c;例如 tensor.view(tensor.size(0), -1) 这类操作&#xff0c;避免直接使用 tensor.s…

frp实现内网穿透极简教程

frp实现内网穿透极简教程 本文是内网穿透极简教程&#xff0c;为求简洁&#xff0c;我们不介绍为什么内网穿透也不介绍其原理&#xff0c;这里假设各位读者都已经明确的知道自己的目的&#xff0c;本文仅介绍如何安装配置 frp 实现内网穿透。 简单来说&#xff0c;内网穿透就…

图像预处理之warpaffine与双线性插值及其高性能实现

图像预处理之warpaffine与双线性插值及其高性能实现 视频讲解&#xff1a;https://www.bilibili.com/video/BV1ZU4y1A7EG 代码Repo&#xff1a;https://github.com/shouxieai/tensorRT_Pro 本文为视频讲解的个人笔记。 warpaffine矩阵变换 对于坐标点的变换&#xff0c;我们通…

sed 简明教程

sed 简明教程 转自&#xff1a;https://coolshell.cn/articles/9104.html awk于1977年出生&#xff0c;今年36岁本命年&#xff0c;sed比awk大2-3岁&#xff0c;awk就像林妹妹&#xff0c;sed就是宝玉哥哥了。所以 林妹妹跳了个Topless&#xff0c;他的哥哥sed坐不住了&#xf…

[深度][PyTorch] DDP系列第一篇:入门教程

[深度][PyTorch] DDP系列第一篇&#xff1a;入门教程 转自&#xff1a;[原创][深度][PyTorch] DDP系列第一篇&#xff1a;入门教程 概览 想要让你的PyTorch神经网络在多卡环境上跑得又快又好&#xff1f;那你definitely需要这一篇&#xff01; No one knows DDP better than I…

[深度][PyTorch] DDP系列第二篇:实现原理与源代码解析

[深度][PyTorch] DDP系列第二篇&#xff1a;实现原理与源代码解析 转自&#xff1a;https://zhuanlan.zhihu.com/p/187610959 概览 想要让你的PyTorch神经网络在多卡环境上跑得又快又好&#xff1f;那你definitely需要这一篇&#xff01; No one knows DDP better than I do! …

[深度][PyTorch] DDP系列第三篇:实战与技巧

[深度][PyTorch] DDP系列第三篇&#xff1a;实战与技巧 转自&#xff1a;https://zhuanlan.zhihu.com/p/250471767 零. 概览 想要让你的PyTorch神经网络在多卡环境上跑得又快又好&#xff1f;那你definitely需要这一篇&#xff01; No one knows DDP better than I do! – – …

机器学习:系统设计与实现 分布式训练

机器学习系统:设计与实现 分布式训练 转自&#xff1a;https://openmlsys.github.io/chapter_distributed_training/index.html 随着机器学习的进一步发展&#xff0c;科学家们设计出更大型&#xff0c;更多功能的机器学习模型&#xff08;例如说&#xff0c;GPT-3&#xff09;…

从零Makefile落地算法大项目,完整案例教程

从零Makefile落地算法大项目&#xff0c;完整案例教程 转自&#xff1a;从零Makefile落地算法大项目&#xff0c;完整案例教程 作者&#xff1a;手写AI 前言 在这里&#xff0c;你能学到基于Makefile的正式大项目的使用方式和考虑&#xff0c;相信我&#xff0c;其实可以很简单…

PyTorch扩展自定义PyThonC++(CUDA)算子的若干方法总结

PyTorch扩展自定义PyThon/C(CUDA)算子的若干方法总结 转自&#xff1a;https://zhuanlan.zhihu.com/p/158643792 作者&#xff1a;奔腾的黑猫 在做毕设的时候需要实现一个PyTorch原生代码中没有的并行算子&#xff0c;所以用到了这部分的知识&#xff0c;再不总结就要忘光了 &a…

给 Python 算法插上性能的翅膀——pybind11 落地实践

给 Python 算法插上性能的翅膀——pybind11 落地实践 转自&#xff1a;https://zhuanlan.zhihu.com/p/444805518 作者&#xff1a;jesonxiang&#xff08;向乾彪&#xff09;&#xff0c;腾讯 TEG 后台开发工程师 1. 背景 目前 AI 算法开发特别是训练基本都以 Python 为主&…

chrome自动提交文件_收集文档及提交名单统计

知乎文章若有排版问题请见谅&#xff0c;原文放在个人博客中【欢迎互踩&#xff01;】文叔叔文档收集使用动机在我们的学习工作中&#xff0c;少不了要让大家集体提交文件的情况&#xff0c;举个最简单的例子&#xff1a;收作业。 传统的文件收集流程大致是&#xff1a;群内发出…

惠普800g1支持什么内存_惠普黑白激光打印机哪种好 惠普黑白激光打印机推荐【图文详解】...

打印机的出现让我们在生活和日常工作中变得越来越方便&#xff0c;不过随着科技的发展&#xff0c;打印机的类型也变得非常多&#xff0c;其中就有黑白激光打印机&#xff0c;而黑白激光打印机的品牌也有很多&#xff0c;比如我们的惠普黑白激光打印机&#xff0c;今天小编就给…

控制台输出颜色控制

控制台输出颜色控制 转自&#xff1a;https://cloud.tencent.com/developer/article/1142372 前端时间&#xff0c;写了一篇 PHP 在 Console 模式下的进度显示 &#xff0c;正好最近的一个数据合并项目需要用到控制台颜色输出&#xff0c;所以就把相关的信息整理下&#xff0c;…