房价预测python_详解 Kaggle 房价预测竞赛优胜方案:用 Python 进行全面数据探索...

[导读]Kaggle 的房价预测竞赛从 2016 年 8 月开始,到 2017 年 2 月结束。这段时间内,超过 2000 多人参与比赛,选手采用高级回归技术,基于我们给出的 79 个特征,对房屋的售价进行了准确的预测。今天我们介绍的是目前得票数最高的优胜方案:《用 Python 进行全面数据探索》,该方案在数据探索,特征工程上都有十分出色的表现。

作者 Pedro Marcelino 在竞赛中使用的主要方法是关注数据科学处理方法,以及寻找能够指导工作的有力文献资料。作者主要参考《多元数据分析》(Multivariate Data Analysis, Hair et al., 2014)中的第三章 “检查你的数据”。作者将自己研究的方法归为以下三步:定义要解决的问题;

查阅相关文献;

对他们进行修改以适合自己的要求。

“不过是站在巨人的肩膀上。”—— Pedro Marcelino

下面我们就一起来看看作者是如何对数据进行分析的。

了解你的数据

方法框架:理解问题:查看每个变量并且根据他们的意义和对问题的重要性进行哲学分析。

单因素研究:只关注因变量( SalePrice),并且进行更深入的了解。

多因素研究:分析因变量和自变量之间的关系。

基础清洗:清洗数据集并且对缺失数据,异常值和分类数据进行一些处理。

检验假设:检查数据是否和多元分析方法的假设达到一致。

开始之前:import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as npfrom scipy.stats

import normfrom sklearn.preprocessing

import StandardScalerfrom scipy

import stats

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

#bring in the six packs

df_train = pd.read_csv('../input/train.csv')

#check the decoration

df_train.columns

Index(['Id', 'MSSubClass', 'MSZoning','LotFrontage', 'LotArea', 'Street',

'Alley', 'LotShape', 'LandContour', 'Utilities','LotConfig',

'LandSlope', 'Neighborhood', 'Condition1','Condition2', 'BldgType',

'HouseStyle', 'OverallQual', 'OverallCond','YearBuilt', 'YearRemodAdd',

'RoofStyle', 'RoofMatl', 'Exterior1st','Exterior2nd', 'MasVnrType',

'MasVnrArea', 'ExterQual', 'ExterCond','Foundation', 'BsmtQual',

'BsmtCond', 'BsmtExposure', 'BsmtFinType1','BsmtFinSF1',

'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'Heating',

'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF','2ndFlrSF',

'LowQualFinSF', 'GrLivArea', 'BsmtFullBath','BsmtHalfBath', 'FullBath',

'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr','KitchenQual',

'TotRmsAbvGrd', 'Functional', 'Fireplaces','FireplaceQu', 'GarageType',

'GarageYrBlt', 'GarageFinish', 'GarageCars','GarageArea', 'GarageQual',

'GarageCond', 'PavedDrive', 'WoodDeckSF','OpenPorchSF',

'EnclosedPorch', '3SsnPorch', 'ScreenPorch','PoolArea', 'PoolQC',

'Fence', 'MiscFeature', 'MiscVal', 'MoSold','YrSold', 'SaleType',

'SaleCondition', 'SalePrice'],

dtype='object')

准备工作——我们可以期望什么?

为了了解我们的数据,我们可以分析每个变量并且尝试理解他们的意义和与该问题的相关程度。

首先建立一个 Excel 电子表格,有如下目录:变量 – 变量名。

类型 – 该变量的类型。这一栏只有两个可能值,“数据” 或 “类别”。 “数据” 是指该变量的值是数字,“类别” 指该变量的值是类别标签。

划分 – 指示变量划分. 我们定义了三种划分:建筑,空间,位置。

期望 – 我们希望该变量对房价的影响程度。我们使用类别标签 “高”,“中” 和 “低” 作为可能值。

结论 – 我们得出的该变量的重要性的结论。在大概浏览数据之后,我们认为这一栏和 “期望” 的值基本一致。

评论 – 我们看到的所有一般性评论。

我们首先阅读了每一个变量的描述文件,同时思考这三个问题:我们买房子的时候会考虑这个因素吗?

如果考虑的话,这个因素的重要程度如何?

这个因素带来的信息在其他因素中出现过吗?

我们根据以上内容填好了电子表格,并且仔细观察了 “高期望” 的变量。然后绘制了这些变量和房价之间的散点图,填在了 “结论” 那一栏,也正巧就是对我们的期望值的校正。

我们总结出了四个对该问题起到至关重要的作用的变量:OverallQual

YearBuilt.

TotalBsmtSF.

GrLivArea.

最重要的事情——分析 “房价”

描述性数据总结:df_train['SalePrice'].describe()

count      1460.000000

mean     180921.195890

std       79442.502883

min       34900.000000

25%      129975.000000

50%      163000.000000

75%      214000.000000

max      755000.000000

Name: SalePrice, dtype: float64

绘制直方图

sns.distplot(df_train['SalePrice']);

从直方图中可以看出:偏离正态分布

数据正偏

有峰值

数据偏度和峰度度量:print("Skewness: %f" % df_train['SalePrice'].skew())

print("Kurtosis: %f" % df_train['SalePrice'].kurt())

Skewness: 1.882876

Kurtosis: 6.536282

“房价” 的相关变量分析

与数字型变量的关系:

1. Grlivarea 与 SalePrice 散点图var = 'GrLivArea'

data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)

data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));

可以看出 SalePrice 和 GrLivArea 关系很密切,并且基本呈线性关系。

2. TotalBsmtSF 与 SalePrice 散点图var = 'TotalBsmtSF'

data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)

data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));

TotalBsmtSF  和 SalePrice 关系也很密切,从图中可以看出基本呈指数分布,但从最左侧的点可以看出特定情况下 TotalBsmtSF 对 SalePrice 没有产生影响。

与类别型变量的关系

1.‘OverallQual’与‘SalePrice’箱型图var = 'OverallQual'

data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)

f, ax = plt.subplots(figsize=(8, 6))

fig = sns.boxplot(x=var, y="SalePrice", data=data)

fig.axis(ymin=0, ymax=800000);

可以看出 SalePrice 与 OverallQual 分布趋势相同。

2. YearBuilt 与 SalePrice 箱型图var = 'YearBuilt'

data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)

f, ax = plt.subplots(figsize=(16, 8))

fig = sns.boxplot(x=var, y="SalePrice", data=data)

fig.axis(ymin=0, ymax=800000);plt.xticks(rotation=90);

两个变量之间的关系没有很强的趋势性,但是可以看出建筑时间较短的房屋价格更高。

总结:GrLivArea 和 TotalBsmtSF 与 SalePrice 似乎线性相关,并且都是正相关。 对于 TotalBsmtSF 线性关系的斜率十分的高。

OverallQual 和 YearBuilt 与 SalePrice 也有关系。OverallQual 的相关性更强, 箱型图显示了随着整体质量的增长,房价的增长趋势。

我们只分析了四个变量,但是还有许多其他变量我们也应该分析,这里的技巧在于选择正确的特征(特征选择)而不是定义他们之间的复杂关系(特征工程)。

客观分析

1. 相关系数矩阵corrmat = df_train.corr()

f, ax = plt.subplots(figsize=(12, 9))

sns.heatmap(corrmat, vmax=.8, square=True);

首先两个红色的方块吸引到了我,第一个是 TotalBsmtSF 和 1stFlrSF 变量的相关系数,第二个是 GarageX 变量群。这两个示例都显示了这些变量之间很强的相关性。实际上,相关性的程度达到了一种多重共线性的情况。我们可以总结出这些变量几乎包含相同的信息,所以确实出现了多重共线性。

另一个引起注意的地方是 SalePrice 的相关性。我们可以看到我们之前分析的 GrLivArea,TotalBsmtSF和 OverallQual 的相关性很强,除此之外也有很多其他的变量应该进行考虑,这也是我们下一步的内容。

2. SalePrice 相关系数矩阵k = 10 #number ofvariables for heatmap

cols = corrmat.nlargest(k, 'SalePrice')['SalePrice'].index

cm = np.corrcoef(df_train[cols].values.T)

sns.set(font_scale=1.25)

hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10},

yticklabels=cols.values, xticklabels=cols.values)

plt.show()

从图中可以看出:OverallQual,GrLivArea 以及 TotalBsmtSF  与 SalePrice 有很强的相关性。

GarageCars 和 GarageArea 也是相关性比较强的变量. 车库中存储的车的数量是由车库的面积决定的,它们就像双胞胎,所以不需要专门区分 GarageCars 和 GarageAre,所以我们只需要其中的一个变量。这里我们选择了 GarageCars,因为它与 SalePrice 的相关性更高一些。

TotalBsmtSF  和 1stFloor 与上述情况相同,我们选择 TotalBsmtS 。

FullBath 几乎不需要考虑。

TotRmsAbvGrd 和 GrLivArea 也是变量中的双胞胎。

YearBuilt 和 SalePrice 相关性似乎不强。

3. SalePrice 和相关变量之间的散点图sns.set()

cols = ['SalePrice', 'OverallQual', 'GrLivArea','GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']

sns.pairplot(df_train[cols], size = 2.5)

plt.show();

尽管我们已经知道了一些主要特征,这一丰富的散点图给了我们一个关于变量关系的合理想法。

其中,TotalBsmtSF 和 GrLiveArea 之间的散点图是很有意思的。我们可以看出这幅图中,一些点组成了线,就像边界一样。大部分点都分布在那条线下面,这也是可以解释的。地下室面积和地上居住面积可以相等,但是一般情况下不会希望有一个比地上居住面积还大的地下室。

SalePrice 和 YearBuilt 之间的散点图也值得我们思考。在 “点云” 的底部,我们可以观察到一个几乎呈指数函数的分布。我们也可以看到 “点云” 的上端也基本呈同样的分布趋势。并且可以注意到,近几年的点有超过这个上端的趋势。

缺失数据

关于缺失数据需要思考的重要问题:这一缺失数据的普遍性如何?

缺失数据是随机的还是有律可循?

这些问题的答案是很重要的,因为缺失数据意味着样本大小的缩减,这会阻止我们的分析进程。除此之外,以实质性的角度来说,我们需要保证对缺失数据的处理不会出现偏离或隐藏任何难以忽视的真相。total= df_train.isnull().sum().sort_values(ascending=False)

percent = (df_train.isnull().sum()/df_train.isnull().count()).sort_values(ascending=False)

missing_data = pd.concat([total, percent], axis=1, keys=['Total','Percent'])

missing_data.head(20)

当超过 15% 的数据都缺失的时候,我们应该删掉相关变量且假设该变量并不存在。

根据这一条,一系列变量都应该删掉,例如 PoolQC,MiscFeature,Alley 等等,这些变量都不是很重要,因为他们基本都不是我们买房子时会考虑的因素。

GarageX 变量群的缺失数据量都相同,由于关于车库的最重要的信息都可以由 GarageCars 表达,并且这些数据只占缺失数据的 5%,我们也会删除上述的 GarageX 变量群。同样的逻辑也适用于 BsmtX 变量群。

对于 MasVnrArea 和 MasVnrType,我们可以认为这些因素并不重要。除此之外,他们和 YearBuilt 以及 OverallQual 都有很强的关联性,而这两个变量我们已经考虑过了。所以删除 MasVnrArea 和 MasVnrType 并不会丢失信息。

最后,由于 Electrical 中只有一个损失的观察值,所以我们删除这个观察值,但是保留这一变量。df_train= df_train.drop((missing_data[missing_data['Total'] > 1]).index,1)

df_train= df_train.drop(df_train.loc[df_train['Electrical'].isnull()].index)

df_train.isnull().sum().max() #justchecking that there's no missing data missing...

异常值

单因素分析

这里的关键在于如何建立阈值,定义一个观察值为异常值。我们对数据进行正态化,意味着把数据值转换成均值为 0,方差为 1 的数据。saleprice_scaled= StandardScaler().fit_transform(df_train['SalePrice'][:,np.newaxis]);

low_range = saleprice_scaled[saleprice_scaled[:,0].argsort()][:10]

high_range= saleprice_scaled[saleprice_scaled[:,0].argsort()][-10:]

print('outer range (low) of the distribution:')

print(low_range)

print('\nouter range (high) of thedistribution:')

print(high_range)

进行正态化后,可以看出:低范围的值都比较相似并且在 0 附近分布。

高范围的值离 0 很远,并且七点几的值远在正常范围之外。

双变量分析

1.  GrLivArea 和 SalePrice 双变量分析var = 'GrLivArea'

data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)

data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));

从图中可以看出:有两个离群的 GrLivArea 值很高的数据,我们可以推测出现这种情况的原因。或许他们代表了农业地区,也就解释了低价。 这两个点很明显不能代表典型样例,所以我们将它们定义为异常值并删除。

图中顶部的两个点是七点几的观测值,他们虽然看起来像特殊情况,但是他们依然符合整体趋势,所以我们将其保留下来。

删除点df_train.sort_values(by = 'GrLivArea',ascending = False)[:2]

df_train = df_train.drop(df_train[df_train['Id'] == 1299].index)

df_train = df_train.drop(df_train[df_train['Id'] == 524].index)

2.  TotalBsmtSF 和 SalePrice 双变量分析var = 'TotalBsmtSF'

data = pd.concat([df_train['SalePrice'],df_train[var]], axis=1)

data.plot.scatter(x=var, y='SalePrice',ylim=(0,800000));

核心部分

“房价” 到底是谁?

这个问题的答案,需要我们验证根据数据基础进行多元分析的假设。

我们已经进行了数据清洗,并且发现了 SalePrice 的很多信息,现在我们要更进一步理解 SalePrice 如何遵循统计假设,可以让我们应用多元技术。

应该测量 4 个假设量:正态性

同方差性

线性

相关错误缺失

正态性:

应主要关注以下两点:直方图 – 峰度和偏度。

正态概率图 – 数据分布应紧密跟随代表正态分布的对角线。

1.  SalePrice

绘制直方图和正态概率图:sns.distplot(df_train['SalePrice'], fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['SalePrice'], plot=plt)

可以看出,房价分布不是正态的,显示了峰值,正偏度,但是并不跟随对角线。

可以用对数变换来解决这个问题

进行对数变换:df_train['SalePrice']= np.log(df_train['SalePrice'])

绘制变换后的直方图和正态概率图:sns.distplot(df_train['SalePrice'], fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['SalePrice'], plot=plt)

2. GrLivArea

绘制直方图和正态概率曲线图:sns.distplot(df_train['GrLivArea'], fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['GrLivArea'], plot=plt)

进行对数变换:df_train['GrLivArea']= np.log(df_train['GrLivArea'])

绘制变换后的直方图和正态概率图:sns.distplot(df_train['GrLivArea'], fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['GrLivArea'], plot=plt)

3.  TotalBsmtSF

绘制直方图和正态概率曲线图:sns.distplot(df_train['TotalBsmtSF'],fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['TotalBsmtSF'],plot=plt)

从图中可以看出:显示出了偏度

大量为 0 的观察值(没有地下室的房屋)

含 0 的数据无法进行对数变换

我们建立了一个变量,可以得到有没有地下室的影响值(二值变量),我们选择忽略零值,只对非零值进行对数变换。这样我们既可以变换数据,也不会损失有没有地下室的影响。df_train['HasBsmt']= pd.Series(len(df_train['TotalBsmtSF']), index=df_train.index)

df_train['HasBsmt'] = 0

df_train.loc[df_train['TotalBsmtSF']>0,'HasBsmt'] = 1

进行对数变换:df_train['TotalBsmtSF']= np.log(df_train['TotalBsmtSF'])

绘制变换后的直方图和正态概率图:sns.distplot(df_train['TotalBsmtSF'], fit=norm);

fig = plt.figure()

res = stats.probplot(df_train['TotalBsmtSF'], plot=plt)

同方差性:

最好的测量两个变量的同方差性的方法就是图像。

1.  SalePrice 和 GrLivArea 同方差性

绘制散点图:plt.scatter(df_train['GrLivArea'],df_train['SalePrice']);

2. SalePrice with TotalBsmtSF 同方差性

绘制散点图:plt.scatter(df_train[df_train['TotalBsmtSF']>0]['TotalBsmtSF'], df_train[df_train['TotalBsmtSF']>0]['SalePrice']);

可以看出 SalePrice 在整个 TotalBsmtSF 变量范围内显示出了同等级别的变化。

虚拟变量

将类别变量转换为虚拟变量:df_train = pd.get_dummies(df_train)

结论

整个方案中,我们使用了很多《多元数据分析》中提出的方法。我们对变量进行了哲学分析,不仅对 SalePrice 进行了单独分析,还结合了相关程度最高的变量进行分析。我们处理了缺失数据和异常值,我们验证了一些基础统计假设,并且将类别变量转换为虚拟变量。

但问题还没有结束,我们还需要预测房价的变化趋势,房价预测是否适合线性回归正则化的方法?是否适合组合方法?或者一些其他的方法?

希望你可以进行自己的探索发现。

雷锋网(公众号:雷锋网)按:本文原载于36大数据。

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/527666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python xycoords_python可视化节点关系(三):matplotlib(2)鼠标交互

实现鼠标交互1. 实现鼠标点击节点高亮直接上代码:# -*- coding: utf-8 -*-# -*- coding: utf-8 -*-import matplotlib.pyplot as pltfrom matplotlib.patches import Rectangleimport numpy as npfig, ax plt.subplots(figsize(10,10))node_pos [(1, 0), (0, 1), …

java.util.zip.zipexception_android-如何解决java.util.zip.ZipException?

每当我尝试调试和部署我的android应用程序(在Android Studio 0.9中)时,都会出现以下错误:Execution failed for task :app:packageAllDebugClassesForMultiDex.java.util.zip.ZipException: duplicate entry: android/support/multidex/BuildConfig.clas…

处理入参_看看优秀的程序员是如何处理NPE的

点击上方 果汁简历 ,选择“置顶公众号”优质文章,第一时间送达西格玛的博客https://urlify.cn/7j2uMz在笔者几年的开发经验中,经常看到项目中存在到处空值判断的情况,这些判断,会让人觉得摸不这头绪,它的出…

udl 连mysql_自己如何正确获取MYSQL的ADO连接字符串

1.在桌面上新建一个空的文本文件mysql.txt,重命名为mysql.udl;2.双击这个mysql.udl文件,打开“数据库连接属性”对话框,在“提供程序”页选择”Micrsoft Ole DB Provider for ODBC Drivers“, 点击下一步;3.在“连接”…

id 怎么获取jira 评论_一篇文章教会你使用Python定时抓取微博评论

【Part1——理论篇】试想一个问题,如果我们要抓取某个微博大V微博的评论数据,应该怎么实现呢?最简单的做法就是找到微博评论数据接口,然后通过改变参数来获取最新数据并保存。首先从微博api寻找 抓取评论的接口,如下图…

单片机中存储器扩展位地址线怎么算_51单片机CPU结构各部件的原理详细分析

一、 51单片机串行口工作原理MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD(P3.0)和TXD(P3.1)可与外设电路进行全双工的串行异步通信。1.串行端口的基本特点8031单片机的串行端口有4种基本工作方式,通…

python format格式化输出填充符号不起作用_Python格式化输出——format用法示例

format OR %提到Python中的格式化输出方法,一般来说有以下两种方式:print(hello %s % world)# hello worldprint(hello {}.format(world))# hello world到底哪种好呢,反正对我来说,用了.format()之后就再也不想用%了。format()不用…

h5弹框滑动 ios_微信 iOS 版更新:细节大更新,你值得拥有

在9月17日,IOS 微信 7.0.7 正式上线了,和一周前安卓 微信 7.0.7 内测版相似,本次的微信更新并没有新功能的上线,更多的是细节上的改变优化。不知道大家有没有发现,iOS版微信从 7.0.5直接跳过7.0.6,直接更新…

jpa onetoone_拥抱开源从表设计到 JPA 实现

long may the sunshine.今天的我拿起键盘就是猛敲代码。果然,十分钟后各种 JPA 报错开始了。跟新手党一样,看到一个错误就解决一个,没有好好思考为什么会出现这样的错误。于是乎,遇到一个解决一个,解决一个又遇到一个&…

python 数据流中的移动平均值_剑指Offer-41-数据流中的中位数

题目题目描述如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。 例如,[2,3,4] 的中…

vue 全局键盘_如何解决ios input框唤起软键盘不灵敏问题?

为什么移动端点击事件要加300ms延迟呢?早在 2007 年初,苹果公司在发布首款 iPhone 前夕,遇到一个问题:当时的网站都是为大屏幕设备所设计的。于是苹果的工程师们做了一些约定,应对 iPhone 这种小屏幕浏览桌面端站点的问…

css一个盒子里可以装3个图片并排吗_John: CSS浮动与清除浮动属性详解(CSS float clear)...

CSS里的浮动,可以让元素脱离标准流,从左上角或右上角依次贴边排列。下面这个案例将会帮我们了解浮动的基本情况。下面这段代码块,外面是一个大div,里面包含着3个div,第一个左浮动,后两个无浮动。//style样式…

连接驱动_在jdbc中完成对于jdbc参数、jdbc变量,加载驱动,创建连接的封装

JDBC简介JDBC中文含义:Java数据库连接,英文全称:Java Database Connectivity。它是Java语言中用来规范访问数据库的接口,提供了放多接口方法,例如查询 、更新、插入、删除等方法。另外一点要注意的是:JDBC是…

tensorflow 保存训练loss_tensorflow2.0保存和加载模型 (tensorflow2.0官方教程翻译)

最新版本:https://www.mashangxue123.com/tensorflow/tf2-tutorials-keras-save_and_restore_models.html英文版本:https://tensorflow.google.cn/alpha/tutorials/keras/save_and_restore_models翻译建议PR:https://github.com/mashangxue/t…

layui导入模板数据_数据可视化图表 教程echarts,第一讲

1我们写web项目,展示数据的地方,可能会使用到图表。今天就讲这个玩意。本教程暂时定为 三讲:(随后情况,如果有新的研究,会有所更新!)第一讲 饼图的使用第二讲 柱状图的使用第三讲 拆线图的使用此教程希望…

出发a标签_以用户标签为例,复盘B端产品的需求挖掘方法论

阅读指南受众人群:B端初级产品经理阅读收获:B端产品需求挖掘的一些技巧;了解用户标签/画像的一些业务知识。手上负责一个和数据方面有关的B端系统,在日常的产品规划当中,没有关于“用户标签”方面的规划,突…

字符ascii码值转换_没想到 Unicode 字符还能这样玩?

脚本之家你与百万开发者在一起来源 | 程序通事(ID:US_stocks)如若转载请联系原公众号上周的时候,朋友圈的直升飞机不知道为什么就火了,很多朋友开着各种花式飞机带着起飞。图片来自网络还没来得及了解咋回事来着,这个直升飞机就?…

右键菜单无响应_被流氓软件玩坏了?这两个清理工具拯救你凌乱的右键菜单。...

Hello 这里是一周进步我们写了四年近2000篇的干货文章,还分享了许多实用的神器工具,一路以来,感谢大家的支持与陪伴~文 / 一周进步 安哥拉如果你和我们一样,是一个喜欢在电脑上安装各种各样的软件的人,你的电脑右键菜…

python列表超出索引_python列表的切片操作允许索引超出范围

web开发的步骤前端知道是浏览器呈现的部分,相对于前端,后台你可以理解为服务器端专门处理.读取.存储数据库数据的部分. 因为网站是基于B\S架构,即浏览器---服务端架构,就程序来讲,可笼统划分为前端程序和服务器端程 ...const 指针的三种使用方式///const 指针的三种状态/ 注意:…

linux搭建mcpe服务器_Ubuntu Linux下搭建Minecraft我的世界服务器

总结一下在Ubuntu Linux下搭建Minecraft我的世界服务器的方法,其实非常简单直接。(1)、把当前的软件都更新到最新sudo apt-get updateMinecraft服务器需要Java支持。为了检查我们是否已经安装Java,我们执行下面的命令:java -version如果Java已…