庖丁解牛-图解MySQL 8.0优化器查询转换篇

简介: 在《庖丁解牛-图解MySQL 8.0优化器查询解析篇》一文中我们重点介绍了MySQL最新版本8.0.25关于SQL基本元素表、列、函数、聚合、分组、排序等元素的解析、设置和转换过程,本篇我们继续来介绍更为复杂的子查询、分区表和JOIN的复杂转换过程。

image.png

作者 | 道客
来源 | 阿里技术公众号

一 背景和架构

在《庖丁解牛-图解MySQL 8.0优化器查询解析篇》一文中我们重点介绍了MySQL最新版本8.0.25关于SQL基本元素表、列、函数、聚合、分组、排序等元素的解析、设置和转换过程,本篇我们继续来介绍更为复杂的子查询、分区表和JOIN的复杂转换过程,大纲如下:

Transformation

  • remove_redundant_subquery_clause :

Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.

  • remove_base_options:

Remove SELECT_DISTINCT options from a query block if can skip distinct

  • resolve_subquery :Resolve predicate involving subquery, perform early unconditional subquery transformations

    • Convert subquery predicate into semi-join, or
    • Mark the subquery for execution using materialization, or
    • Perform IN->EXISTS transformation, or
    • Perform more/less ALL/ANY -> MIN/MAX rewrite
    • Substitute trivial scalar-context subquery with its value
  • transform_scalar_subqueries_to_join_with_derived:

Transform eligible scalar subqueries to derived tables.

  • flatten_subqueries :

Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.

  • apply_local_transforms :

    • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.
    • simplify_joins : Convert all outer joins to inner joins if possible.
    • prune_partitions :Perform partition pruning for a given table and condition.
  • push_conditions_to_derived_tables :

Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();

  • Window::eliminate_unused_objects:

Eliminate unused window definitions, redundant sorts etc.

二 详细转换过程

1 解析子查询(resolve_subquery)

解析条件中带有子查询的语句,做一些早期的无限制的子查询转换,包括:

  • 标记subquery是否变成semi-join

    • 转换判断条件
    • 检查OPTIMIZER_SWITCH_SEMIJOIN和HINT没有限制
    • 子查询是IN/=ANY和EXIST subquery的谓词
    • 子查询是简单查询块而不是UNION
    • 子查询无隐形和显性的GROUP BY
    • 子查询没有HAVING、WINDOW函数
    • Resolve的阶段是Query_block::RESOLVE_CONDITION和Query_block::RESOLVE_JOIN_NEST并且没有用到最新的Hyper optimizer优化器。
    • 外查询块可以支持semijoins
    • 至少要一个表,而不是类似"SELECT 1"
    • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
    • 父查询也至少有一个表
    • 父查询和子查询都不能有straight join
    • 父查询块不禁止semijoin
    • IN谓词返回值是否是确定的,不是RAND
    • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
    • Antijoin是可以支持的,或者是semijoin
    • offset和limit对于semjoin是有效的,offset是从第一行开始,limit也不是0
    • 设置Subquery_strategy::CANDIDATE_FOR_SEMIJOIN并添加sj_candidates
  • 标记subquery是否执行时采用materialization方案

    • 如果不符合转换semijoin,尝试使用物化方式,转换判断条件
    • Optimzier开关subquery_to_derived=on
    • 子查询是IN/=ANY or EXISTS谓词
    • 子查询是简单查询块而不是UNION
    • 如果是[NOT] EXISTS,必须没有聚合
    • Subquery谓词在WHERE子句(目前没有在ON子句实现),而且是ANDs or ORs的表达式tree
    • 父查询块支持semijoins
    • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
    • 父查询也至少有一个表,然后可以做LEFT JOIN
    • 父查询块不禁止semijoin
    • IN谓词返回值是否是确定的,不是RAND
    • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
    • 不支持左边参数不是multi-column子查询(WHERE (outer_subq) = ROW(derived.col1,derived.col2))
    • 该子查询不支持转换为Derived table(m_subquery_to_derived_is_impossible)
    • 设置Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE并添加sj_candidates
  • 如果上面两个策略无法使用,根据类型选择transformer

    • Item_singlerow_subselect::select_transformer
    • 对于简单的标量子查询,在查询中直接用执行结果代替
select * from t1 where a = (select 1); 
=>
select * from t1 where a = 1;

image.png

  • Item_in_subselect/Item_allany_subselect::select_transformer->select_in_like_transformer
  • select_in_like_transformer函数来处理 IN/ALL/ANY/SOME子查询转换transformation
  • 处理"SELECT 1"(Item_in_optimizer)
  • 如果目前还没有子查询的执行方式,也就是无法使用semijoin/antijoin执行的子查询,会做IN->EXISTS的转换,本质是在物化执行和迭代式循环执行中做选择。IN语法代表非相关子查询仅执行一次,将查询结果物化成临时表,之后需要结果时候就去物化表中查找;EXISTS代表对于外表的每一条记录,子查询都会执行一次,是迭代式循环执行。子查询策略设定为Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT
  • 重写single-column的IN/ALL/ANY子查询(single_value_transformer)
oe $cmp$ (SELECT ie FROM ... WHERE subq_where ... HAVING subq_having)
=>
- oe $cmp$ (SELECT MAX(...) )  // handled by Item_singlerow_subselect
- oe $cmp$ \<max\>(SELECT ...)   // handled by Item_maxmin_subselectfails=>Item_in_optimizer
- 对于已经是materialized方案,不转换
- 通过equi-join转换IN到EXISTS
  • 如果是ALL/ANY单值subquery谓词,尝试用MIN/MAX子查询转换
SELECT * FROM t1 WHERE a < ANY (SELECT a FROM t1); 
=>
SELECT * FROM t1 WHERE a < (SELECT MAX(a) FROM t1)

image.png

  • 不满足上面,调用single_value_in_to_exists_transformer转换IN到EXISTS

    • 转换将要将子查询设置为相关子查询,设置UNCACHEABLE_DEPENDENT标识
    • 如果子查询包含聚合函数、窗口函数、GROUP语法、HAVING语法,将判断条件加入到HAVING子句中,另外通过ref_or_null_helper来区分NULL和False的结果,如需要处理NULL IN (SELECT ...)还需要封装到Item_func_trig_cond触发器中。
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2)
=>
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2[trigcond] HAVING t1.b=ref-to-<expr of SUM(t1.a)>)

image.png

  • 如果子查询不包含聚合函数、窗口函数、GROUP语法,会放在WHERE查询条件中,当然如果需要处理NULL情况还是要放入HAVING子句(Item_func_trig_cond+Item_is_not_null_test)。
不需要区分NULL和FALSE的子查询:SELECT 1 FROM ... WHERE (oe $cmp$ ie) AND subq_where需要区分的子查询:
SELECT 1 FROM ...WHERE subq_where AND trigcond((oe $cmp$ ie) OR (ie IS NULL))HAVING trigcond(@<is_not_null_test@>(ie))
  • JOIN::optimize()会计算materialization和EXISTS转换的代价进行选择,设置m_subquery_to_derived_is_impossible = true
  • ROW值转换,通过Item_in_optimizer,不支持ALL/ANY/SOME(row_value_transformer)

    • Item_in_subselect::row_value_in_to_exists_transformer
for (each left operand)create the equi-join conditionif (is_having_used || !abort_on_null)create the "is null" and is_not_null_test itemsif (is_having_used)add the equi-join and the null tests to HAVINGelseadd the equi-join and the "is null" to WHEREadd the is_not_null_test to HAVING
  • 没有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... WHERE where) =>
EXISTS (SELECT ... WHERE where and(l1 = v1 or is null v1) and(l2 = v2 or is null v2) and(l3 = v3 or is null v3)[ HAVING is_not_null_test(v1) andis_not_null_test(v2) andis_not_null_test(v3)) ] <-- 保证不为NULL可以去掉HAVING
  • 有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... HAVING having) =>
EXISTS (SELECT ... HAVING having and(l1 = v1 or is null v1) and(l2 = v2 or is null v2) and(l3 = v3 or is null v3) andis_not_null_test(v1) andis_not_null_test(v2) andis_not_null_test(v3))

2 转换的标量子查询转换成Derived Table(transform_scalar_subqueries_to_join_with_derived)

该特性是官方在8.0.16中为了更好的支持Secondary Engine(Heapwave)的分析下推,增强了子查询的转换能力。可以先直观的看下转换和不转换的执行计划的不同:

root:test> set optimizer_switch = 'subquery_to_derived=off';
Query OK, 0 rows affected (0.00 sec)root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type        | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra           |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
|  1 | PRIMARY            | t4    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   10 |   100.00 | Using temporary |
|  2 | DEPENDENT SUBQUERY | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |    33.33 | Using where     |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
2 rows in set, 3 warnings (0.00 sec)root:test> set optimizer_switch = 'subquery_to_derived=on';
Query OK, 0 rows affected (0.00 sec)root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table      | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                      |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
|  1 | PRIMARY     | t4         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   10 |   100.00 | Using temporary                            |
|  1 | PRIMARY     | <derived2> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |   100.00 | Using where; Using join buffer (hash join) |
|  2 | DERIVED     | t2         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |   100.00 | Using temporary                            |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
3 rows in set, 3 warnings (0.01 sec)
  • transform_scalar_subqueries_to_join_with_derived具体转换的过程如下:

    • 首先从JOIN条件、WHERE条件、HAVING条件和SELECT list中收集可以转换的标量子查询(Item::collect_scalar_subqueries)。
    • 遍历这些子查询,判断是否可以增加一个额外的转换(transform_grouped_to_derived):把隐性的GROUP BY标量子查询变成Derived Table。
SELECT SUM(c1), (SELECT SUM(c1) FROM t3) scalar FROM t1;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0LEFT JOIN(SELECT SUM(b) AS scalar FROM t3) AS derived1ON TRUE
执行计划如下:
explain SELECT SUM(a), (SELECT SUM(c1) FROM t3) scalar FROM t1;
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table      | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                      |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
|  1 | PRIMARY     | <derived3> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL                                       |
|  1 | PRIMARY     | <derived4> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Using join buffer (hash join) |
|  4 | DERIVED     | t3         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL                                       |
|  3 | DERIVED     | t1         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    2 |   100.00 | NULL                                       |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
  • 收集唯一的聚合函数Item列表(collect_aggregates),这些Item将会被新的Derived Table的列代替。

    • 还需要添加所有引用到这些Item的fields,包括直接在SELECT列表的,Window函数参数、ORDER by、Partition by包含的,还有该查询块中ORDER BY的列,因为他们都会引动到Derived Table里。
    • 创建Derived Table需要的Query_expression/Query_block(create_query_expr_and_block)。
    • 添加Derived Table到查询块和top_join_list中。
    • 保留旧的子查询单元块,如果包含可以转化的Derived的移到Derived Table下面的Query_block,如果不包含,保留到原来的子查询块中。
    • 将之前的聚合函数Item列表插入到Derived Table的查询块中。
    • 收集除GROUP AGG表达式中的列,由于这些fields已经移动到Derived Table中,删除不合理的fields引用。
    • 收集所有唯一的列和View的引用后,将他们加到新的Derived Table列表中。
    • 对新的新的Derived Table进行flatten_subqueries/setup_tables
    • 重新resolve_placeholder_tables,不处理进行转换后的子查询。
    • 处理Derived Table中,新加入的HAVING条件中的聚合函数Item,并通过Item_aggregate_refs引用到new_derived->base_ref_items而不是之前的父查询块base_ref_items。
    • 永久代替父查询块中的聚合函数列表,变成Derived Table的列,并删除他们。
    • 之前保存和加入到Derived Table的唯一的列和View的引用,也要替换新的fields代替他们的引用。

image.png

  • 但目前不支持HAVING表达式中包含该子查询,其实也是可以转换的。
SELECT SUM(a), (SELECT SUM(b) FROM t3) scalar
FROM t1
HAVING SUM(a) > scalar;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0LEFT JOIN(SELECT SUM(b) AS scalar FROM t3) AS derived1ON TRUE
WHERE derived0.sum > derived1.scalar;
  • 接下来遍历所有可以转换的子查询,把他们转换成derived tables,并替换相应的表达式变成列(transform_subquery_to_derived)。

    • 生成derived table的TABLE_LIST(synthesize_derived)。
    • 将可以移动到derived table的where_cond设置到join_cond上。
    • 添加derived table到查询块的表集合中。
    • decorrelate_derived_scalar_subquery_pre
    • 添加非相关引用列(NCF)到SELECT list,这些条件被JOIN条件所引用,并且还有另外一个fields包含了外查询相关的列,我们称之为'lifted_where'
    • 添加COUNT(*)到SELECT list,这样转换的查询块可以进行cardinality的检查。比如没有任何聚合函数在子查询中。如果确定包含聚合函数,返回一行一定是NCF同时在GROUP BY列表中。
    • 添加NCF到子查询的GROUP列表中,如果已经在了,需要加到最后,如果发生GROUP BY的列由于依赖性检查失败,还要加Item_func_any_value(非聚合列)到SELECT list。对于NCF会创建 derived.field和derived.count(field) 。
    • 设置物化的一些准备(setup_materialized_derived)。
    • decorrelate_derived_scalar_subquery_post:
    • 创建对应的'lifted_fields'。
    • 更新JOIN条件中相关列的引用,不在引用外查询而换成Derived table相关的列。
  • 代替WHERE、JOIN、HAVING条件和SELECT list中的子查询的表达式变成对应的Derived Table里面列。

下面图解该函数的转换过程和结果:

image.png

image.png

3 扁平化子查询(flatten_subqueries)

该函数主要是将Semi-join子查询转换为nested JOIN,这个过程只有一次,并且不可逆。

  • 简单来讲步骤可以简化理解为:

    • 创建SEMI JOIN (it1 ... itN)语以部分,并加入到外层查询块的执行计划中。
    • 将子查询的WHERE条件以及JOIN条件,加入到父查询的WHERE条件中。
    • 将子查询谓词从父查询的判断谓词中消除。
  • 由于MySQL在一个query block中能够join的tables数是有限的(MAX_TABLES),不是所有sj_candidates都可以做因此做flatten_subqueries 的,因此需要有优先级决定的先后顺序先unnesting掉,优先级规则如下:

    • 相关子查询优先于非相关的
    • inner tables多的子查询大于inner tables少的
    • 位置前的子查询大于位置后的
subq_item->sj_convert_priority =(((dependent * MAX_TABLES_FOR_SIZE) +  // dependent subqueries firstchild_query_block->leaf_table_count) *65536) +           // then with many tables(65536 - subq_no);  // then based on position
  • 另外,由于递归调用flatten_subqueries是bottom-up,依次把下层的子查询展开到外层查询块中。
    for SELECT#1 WHERE X IN (SELECT #2 WHERE Y IN (SELECT#3)) :Query_block::prepare() (select#1)-> fix_fields() on IN condition-> Query_block::prepare() on subquery (select#2)-> fix_fields() on IN condition-> Query_block::prepare() on subquery (select#3)<- Query_block::prepare()<- fix_fields()-> flatten_subqueries: merge #3 in #2<- flatten_subqueries<- Query_block::prepare()<- fix_fields()-> flatten_subqueries: merge #2 in #1
  • 遍历子查询列表,删除Item::clean_up_after_removal标记为Subquery_strategy::DELETED的子查询,并且根据优先级规则设置sj_convert_priority。根据优先级进行排序。
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE策略的子查询,转换子查询([NOT] {IN, EXISTS})为JOIN的Derived table(transform_table_subquery_to_join_with_derived)
FROM [tables] WHERE ... AND/OR oe IN (SELECT ie FROM it) ...
=>
FROM (tables) LEFT JOIN (SELECT DISTINCT ie FROM it) AS derivedON oe = derived.ie WHERE ... AND/OR derived.ie IS NOT NULL ...
  • 设置策略为Subquery_strategy::DERIVED_TABLE

    • semijoin子查询不能和antijoin子查询相互嵌套,或者外查询表已经超过MAX_TABLE,不做转换,否则标记为Subquery_strategy::SEMIJOIN策略。
    • 判断子查询的WHERE条件是否为常量。如果判断条件永远为FALSE,那么子查询结果永远为空。该情况下,调用Item::clean_up_after_removal标记为Subquery_strategy::DELETED,删除该子查询。
    • 如果无法标记为Subquery_strategy::DELETED/设置Subquery_strategy::SEMIJOIN策略的重新标记会Subquery_strategy::UNSPECIFIED继续下一个。
    • 替换外层查询的WHERE条件中子查询判断的条件(replace_subcondition)
    • 子查询内条件并不永远为FALSE,或者永远为FALSE的情况下,需要改写为antijoin(antijoin情况下,子查询结果永远为空,外层查询条件永远通过)。此时将条件改为永远为True。
    • 子查询永远为FALSE,且不是antijoin。那么将外层查询中的条件改成永远为False。
  • Item_subselect::EXISTS_SUBS不支持有聚合操作

    • convert_subquery_to_semijoin函数解析如下模式的SQL
    • IN/=ANY谓词
  • 如果条件满足解关联,解关联decorrelate_condition
  • 添加解关联的内表表达式到 SELECT list
  • 收集FROM子句中的外表相关的 derived table或join条件
    • 去掉关联标识UNCACHEABLE_DEPENDENT,更新used table
  • Derived table子查询增加SELECT_DISTINCT标识
  • 转换子查询成为一个derived table,并且插入到所属于的查询块FROM后(transform_subquery_to_derived)
  • 创建derived table及其join条件
  • 遍历父查询块的WHERE,替换该子查询的Item代替成derived table(replace_subcondition)
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_SEMIJOIN策略的子查询。
  • 判断是否可以转换为semijoin
  • 遍历排序后的子查询列表,对于Subquery_strategy::SEMIJOIN的子查询,开始转换为semijoin/antijoin(convert_subquery_to_semijoin)

    • convert_subquery_to_semijoin函数解析如下模式的SQL
    • IN/=ANY谓词
  SELECT ...FROM ot1 ... otNWHERE (oe1, ... oeM) IN (SELECT ie1, ..., ieMFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) SJ (it1 ... itK)ON (oe1, ... oeM) = (ie1, ..., ieM)[AND inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • EXISTS谓词
  SELECT ...FROM ot1 ... otNWHERE EXISTS (SELECT expressionsFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) SJ (it1 ... itK)[ON inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • NOT EXISTS谓词
  SELECT ...FROM ot1 ... otNWHERE NOT EXISTS (SELECT expressionsFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) AJ (it1 ... itK)[ON inner-cond][WHERE outer-cond AND is-null-cond(it1)][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • NOT IN谓词
  SELECT ...FROM ot1 ... otNWHERE (oe1, ... oeM) NOT IN (SELECT ie1, ..., ieMFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) AJ (it1 ... itK)ON (oe1, ... oeM) = (ie1, ..., ieM)[AND inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • 查找可以插入semi-join嵌套和其生成的条件的位置,比如对于 t1 LEFT JOIN t2, embedding_join_nest为t2,t2也可以是nested,如t1 LEFT JOIN (t2 JOIN t3))
  • 生成一个新的semijoin嵌套的TABLE_LIST表
  • 处理Antijoin
  • 将子查询中潜在的表合并到上述join表(TABLE_LIST::merge_underlying_tables)
  • 将子查询的叶子表插入到当前查询块的叶子表后面,重新设置子查询的叶子表的序号和依赖的外表。将子查询的叶子表重置。
  • 如果是outer join的话,在join链表中传递可空性(propagate_nullability)
  • 将内层子查询中的关联条件去关联化,这些条件被加入到semijoin的列表里。这些条件必须是确定的,仅支持简单判断条件或者由简单判断条件组成的AND条件(Query_block::decorrelate_condition)

    • 判断左右条件是否仅依赖于内外层表,将其表达式分别加入到semijoin内外表的表达式列表中(decorrelate_equality)
  • 解关联内层查询的join条件(Query_block::decorrelate_condition)
  • 移除该子查询表达式在父查询的AST(Query_express::exclude_level)
  • 根据semi-join嵌套产生的WHERE/JOIN条件更新对应的table bitmap(Query_block::fix_tables_after_pullout)
  • 将子查询的WHERE条件上拉,更新使用表的信息(Item_cond_and::fix_after_pullout())
  • 根据semijoin的条件列表创建AND条件,如果有条件为常量True,则去除该条件;如果常量为False,则整个条件都去除(Query_block::build_sj_cond)
  • 将创建出来的semijoin条件加入到外层查询的WHERE条件中
  • 最后遍历排序后的子查询列表,对于没有转换的子查询,对于Subquery_strategy::UNSPECIFIED的策略,执行IN->EXISTS改写(select_transformer),如果确实原有的子查询已经有替代的Item,调用replace_subcondition解析并把他们加入到合适的WHERE或者ON子句。
  • 清除所有的sj_candidates列表
  • Semi-join有5中执行方式,本文并不介绍Optimizer和Execution过程,详细可以参考引用文章中关于semijoin的介绍,最后引入下控制semijoin优化和执行的优化器开关,其中semijoin=on/off是总开关。
SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: ......materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,......
  • 下图举例说明该转换过程:
SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
=>
/* select#1 */
SELECT `t1`.`a` AS `a`
FROM `t1`
SEMI JOIN (`t2`)
WHERE ((`t1`.`a` = `t2`.`c1`) and (`t2`.`c1` > 0))
执行计划如下:
explain SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                                     |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
|  1 | SIMPLE      | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Start temporary                              |
|  1 | SIMPLE      | t1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    2 |    50.00 | Using where; End temporary; Using join buffer (hash join) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+

image.png

4 应用当前查询块转换(apply_local_transforms)

该函数在flattern subqueries之后,bottom-up调用,主要分几个步骤:

删除无用列(delete_unused_merged_columns)

如果查询块已经删除了一些derived tables/views,遍历SELECT列表的列,删除不必要的列

简化JOIN(simplify_joins)

该函数会把Query_block中的top_join_list的嵌套join的简化为扁平化的join list。嵌套连接包括table1 join table2,也包含table1, (table2, table3)这种形式。如果所示的简化过程:

image.png

分区表的静态剪枝(prune_partitions)

由于剪枝根据HASH/RANGE/LIST及二级分区都有不同,这里简单介绍下剪枝过程,现有prune_partitions是在prepare和optimize阶段会被调用,某些常量子查询被评估执行完。

struct TABLE {......    partition_info *part_info{nullptr}; /* Partition related information *//* If true, all partitions have been pruned away */bool all_partitions_pruned_away{false};......
}SQL tranformation phase
SELECT_LEX::apply_local_transforms
--> prune_partitionsfor example, select * from employee where company_id = 1000 ;SQL optimizer phase
JOIN::prune_table_partitions
--> prune_partitions 
------>  based on tbl->join_cond_optim() or JOIN::where_condfor example, explain select * from employee where company_id = (select c1 from t1);
  • 举例下面RANGE剪枝的过程:
root:ref> CREATE TABLE R2  (->     a INT,->     d INT-> ) PARTITION BY RANGE(a) (->         PARTITION p20 VALUES LESS THAN (20),->         PARTITION p40 VALUES LESS THAN (40),->         PARTITION p60 VALUES LESS THAN (60),->         PARTITION p80 VALUES LESS THAN (80),->         PARTITION p100 VALUES LESS THAN MAXVALUE-> );
Query OK, 0 rows affected (0.09 sec)root:ref> Select * From R2 where a > 40 and a < 80;
  • 剪枝详细过程如下:

    • 由于剪枝需要根据不同条件产生的pruning结果进行交集,因此剪枝过程中需要使用read_partitions这样的bitmap来保存是否使用该对应分区。另外剪枝过程类似迭代判断,因此引入了part_iterator来保存开始、结束和当前,以及对应需要获取区间范围的endpoint函数和获取下一个值next的迭代器函数。这里巧妙的运用了指针,来兼容不同分区类型Hash/Range/List类型,如下图所示:

e10bafcfac57127e4c60e98038d17d4.jpg

  • 获取join_cond或者m_where_cond的SEL_TREE红黑树(get_mm_tree)
  • 调用find_used_partitions来获取满足的分区,对于SEL_TREE的每个区间(interval):1. 获取区间的左右端点 2.从左边继续获取下一个满足的分区,直到到右边端点结束,每次调用完需要进行bitmap的itersection。
  • 设置read_partitions和lock_partitions
  • find_used_partitions是根据SEL_TREE的结构进行递归,如图从左到右遍历next_key_part(and condition),然后再遍历SEL_TREE的左右(也就是上下方向,or condition)深度递归。
    (start)|                           $|   Partitioning keyparts   $  subpartitioning keyparts|                           $|     ...          ...      $|      |            |       $| +---------+  +---------+  $  +-----------+  +-----------+\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|+---------+  +---------+  $  +-----------+  +-----------+|                    $        |             ||                    $        |        +-----------+|                    $        |        | subpar2=c6||                    $        |        +-----------+|                    $        ||                    $  +-----------+  +-----------+|                    $  | subpar1=c4|--| subpar2=c8||                    $  +-----------+  +-----------+|                    $|                    $+---------+               $  +------------+  +------------+| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|+---------+               $  +------------+  +------------+|                    $...                   $例如第一行(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c5)的遍历的stack将是:
in find_used_partitions(key_tree = "subpar2=c5") (***)
in find_used_partitions(key_tree = "subpar1=c3")
in find_used_partitions(key_tree = "par2=c2")   (**)
in find_used_partitions(key_tree = "par1=c1")
in prune_partitions(...)
然后是继续下面的条件,以此类推
or(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c6)
or(par1=c1 and par2=c2 and subpar1=c4 and subpar2=c8)
or(par1=c2 and subpar1=c10 and subpar2=c12)
  • 下图来展示了pruning的结构和过程:

image.png

5 下推条件到Derived Table(push_conditions_to_derived_tables)

该函数将条件下推到derived tables,详细见WL#8084 - Condition pushdown to materialized derived table。

root:test> set optimizer_switch = 'derived_merge=off'; // 关闭dervied_merge 测试下推能力
Query OK, 0 rows affected (0.00 sec)root:test> EXPLAIN FORMAT=tree SELECT * FROM (SELECT c1,c2 FROM t1) as dt     WHERE c1 > 10;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN                                                                                                                                                                                             |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Table scan on dt  (cost=2.51..2.51 rows=1)-> Materialize  (cost=2.96..2.96 rows=1)-> Filter: (t1.c1 > 10)  (cost=0.35 rows=1)-> Table scan on t1  (cost=0.35 rows=1)|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

过程如下:

  • 遍历derived table列表,判断是否可以下推(can_push_condition_to_derived),如果包括下面的情况则不能下推:

    • Derived table有UNION
    • Derived table有LIMIT
    • Derived table不能是outer join中的内表,会导致更多NULL补偿的行
    • 不能是CTE包含的Derived table
  • 创建可以下推到的Derived table的where cond(Condition_pushdown::make_cond_for_derived)
  • 保留剩余不能下推的条件(Condition_pushdown::get_remainder_cond)
  • Top-down递归调用push_conditions_to_derived_tables

详细图解该过程如下:

image.png

三 综述

两篇文章重点介绍了下优化器的基于规则的优化部分,并没有涉及更多的基于代价的优化,可以看到对于直接运用规则优化带来执行的加速,那么可以直接转换,尤其是对于查询结构上面的变化类转换,如merge_derived。对于运用规则优化无法判断是否带来执行的加速,那么优化器会保留一些临时结构,为后续的代价估算提供更多选择,如IN/EXIST/Materialized转换。当然还有一些,又改变查询结构又无法判定是否规则转换带来的执行加速,MySQL目前还不支持。文章虽然详尽,但无法覆盖全部情况,也是为了抛砖引玉,还需要读者自己通过调试的方法更进一步了解某一类SQL的具体过程。

四 参考资料

《MySQL 8.0 Server层最新架构详解》

《WL#13520: Transform correlated scalar subqueries》

《WL#8084 - Condition pushdown to materialized derived table》

《WL#2980: Subquery optimization: Semijoin》

  • WL#3740: Subquery optimization: Semijoin: Pull-out of inner tables
  • WL#3741: Subquery optimization: Semijoin: Duplicate elimination strategy
  • WL#3750: Subquery optimization: Semijoin: First-match strategy
  • WL#3751: Subquery optimization: Semijoin: Inside-out strategy

《WL#4389: Subquery optimizations: Make IN optimizations also handle EXISTS》

《WL#4245: Subquery optimization: Transform NOT EXISTS and NOT IN to anti-join》

《WL#2985: Perform Partition Pruning of Range conditions》

《MySQL · 源码分析 · Semi-join优化执行代码分析》

《MySQL·源码分析·子查询优化源码分析》

《Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions》

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/512377.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hivesql修改字段类型_Hive SQL语法总结

Hive是一个数据仓库基础的应用工具&#xff0c;在Hadoop中用来处理结构化数据&#xff0c;它架构在Hadoop之上&#xff0c;通过SQL来对数据进行操作&#xff0c;了解SQL的人&#xff0c;学起来毫不费力。Hive 查询操作过程严格遵守Hadoop MapReduce 的作业执行模型&#xff0c;…

Cube 技术解读 | 支付宝新一代动态化技术架构与选型综述

简介&#xff1a; 支付宝客户端的动态化技术经历三个阶段&#xff1a;现阶段也就是第三阶段是实体组件部分光栅化的hybrid模式&#xff0c;Cube 就是该模式下的产物。 如标题所述&#xff0c;笔者将持续更新《Cube 技术解读》系列文章。本文为Cube系列首篇文章&#xff0c;后续…

阿里云数字巡展:“云上峰会”背后的秘密武器

简介&#xff1a; 近日&#xff0c;阿里云官网上线了叫做“数字巡展”的新产品&#xff0c;专为各行业在数字化创新提供解决方案。数字巡展&#xff0c;立足于设计创新&#xff0c;融合定制化虚拟空间、沉浸化技术体验、数字化企业营销三大核心能力&#xff0c;通过创意和技术优…

把所有圆圈连接起来的游戏_20个幼儿园体育小游戏教程

1、游戏《木头人》游戏规则&#xff1a;幼儿手拉手围成一个圆圈&#xff0c;边走边念儿歌"我是一个木头人&#xff0c;不会说话不会动&#xff0c;看谁坚持一分钟"念到最后一个字时所有幼儿摆出造型不动。老 师说时间到才能动&#xff0c;游戏反复进行。2、游戏《粘泡…

拒绝双写:巧用Lindorm数据订阅

简介&#xff1a; 本文介绍了双写场景的一致性问题&#xff0c;详细介绍了三种解决方案&#xff0c;并针对DB->Binlog->Kafka方案给出了Lindorm数据订阅的最佳实践 双写问题介绍 双写问题&#xff08;Dual Write Problem&#xff09;是指&#xff1a;需要同时修改两个独…

春节快到了,来写个烟花动效吧

作者 | Eason来源 | 程序员巴士2022虎年大吉&#xff0c;预祝各位小伙伴们新年快乐&#xff0c;这篇文章教大家如何在 Canvas 中实现高性能的烟花粒子特效&#xff0c;通过使用 Canvas BitmapShader GestureDetector技术栈&#xff0c;实现趣味 2D 春节烟花特效页面&#xff…

商用服务器系统比较好,商用服务器操作系统都用哪种

商用服务器操作系统都用哪种 内容精选换一换切换弹性云服务器操作系统。支持弹性云服务器数据盘不变的情况下&#xff0c;使用新镜像重装系统盘。调用该接口后&#xff0c;系统将卸载系统盘&#xff0c;然后使用新镜像重新创建系统盘&#xff0c;并挂载至弹性云服务器&#xff…

边缘使用 K8s 门槛太高?OpenYurt 这个功能帮你快速搭建集群!

简介&#xff1a; 为了降低 OpenYurt 的使用门槛&#xff0c;帮助更多地开发者快速上手 OpenYurt&#xff0c;社区提供了 OpenYurt 易用性工具 yurtctl。该工具致力于屏蔽 OpenYurt 集群创建的复杂性&#xff0c;帮助开发者在本地快速地搭建 OpenYurt 开发测试集群。 OpenYurt…

Effective Java 在工作中的应用总结

简介&#xff1a; 《Effective Java》是一本经典的 Java 学习宝典&#xff0c;值得每位 Java 开发者阅读。笔者将书中和平日工作较密切的知识点做了部分总结。 作者 | 宜秋 来源 | 阿里技术公众号 《Effective Java》是一本经典的 Java 学习宝典&#xff0c;值得每位 Java 开发…

harfbuzz安装位置 linux_最新Ubuntu 20.04 LTS已发布,在Win10中该如何进行安装和使用?...

最近Ubuntu发布最新的20.04 LTS长期支持版本&#xff0c;官方提供为期5年的更新升级、安全修复等服务。国内的优麒麟团队也同步放出了优麒麟20.04 LTS&#xff0c;加入了全新的UKUI 3.0桌面环境。那么如何在微软的Windows系统中安装体验最新的Ubuntu系统呢&#xff1f;实际上相…

如何查看华为服务器配置信息,查看服务器网络配置信息

查看服务器网络配置信息 内容精选换一换ECS的网卡绑定虚拟IP地址后&#xff0c;该虚拟IP地址无法ping通。以下排查思路根据原因的出现概率进行排序&#xff0c;建议您从高频率原因往低频率原因排查&#xff0c;从而帮助您快速找到问题的原因。如果解决完某个可能原因仍未解决问…

通过Kubernetes监控探索应用架构,发现预期外的流量

简介&#xff1a; Kubernetes 监控立足于应用监控之下的 Kubernetes 容器界面和底层操作系统&#xff0c;是 Kubernetes 集群软件栈端到端可观测性的一体化解决方案&#xff0c;在 Kubernetes 监控中可以同时看到关联的所有层的观测数据。我们希望通过 Kubernetes 监控的一系列…

追踪 Kubernetes 中的网络流量

作者 | Addo Zhang来源 | 云原生指北译者注&#xff1a;这篇文章很全面的罗列出了 Kubernetes 中涉及的网络知识&#xff0c;从 Linux 内核的网络内容&#xff0c;到容器、Kubernetes&#xff0c;一一进行了详细的说明。文章篇幅有点长&#xff0c;不得不说&#xff0c;网络是很…

Go 语言网络库 getty 的那些事

简介&#xff1a; Getty 维护团队不追求无意义的 benchmark 数据&#xff0c;不做无意义的炫技式优化&#xff0c;只根据生产环境需求来进行自身改进。只要维护团队在&#xff0c;Getty 稳定性和性能定会越来越优秀。 个人从事互联网基础架构系统研发十年余&#xff0c;包括我…

std中稳定排序算法_源代码库已开放 | 哈工大硕士生用 Python 实现了 11 种经典数据降维算法...

转自&#xff1a;AI开发者网上关于各种降维算法的资料参差不齐&#xff0c;同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法&#xff0c;包括&#xff1a;PCA、LDA、MDS、LLE、TSNE 等&#xff0c;并附有相关资料、展…

曲师大教务系统服务器,曲师大教务处信息门户入口地址

为了规范财务行为&#xff0c;加强财务管理&#xff0c;提高代管经费使用效益&#xff0c;提高项目建设质量&#xff0c;根据上级和学校有关财务规定&#xff0c;结合我校实际情况&#xff0c;特制定本办法。一、教务处代管的项目经费品牌特色专业建设经费、精品课程建设经费、…

云网管—云上构建网络自动化体系

简介&#xff1a; 云网管是基于阿里云网络多年技术和经验沉淀打造的云上智能网络管理运维平台&#xff0c;提供企业网络全生命周期管理运维的能力&#xff0c;让部署更快捷、运维更高效、网络更透明。 1.背景 云网管是基于阿里云网络多年技术和经验沉淀打造的云上智能网络管理…

【C++练级之路】【Lv.5】动态内存管理(都2023年了,不会有人还不知道new吧?)

目录 一、C/C内存分布二、new和delete的使用方式2.1 C语言内存管理2.2 C内存管理2.2.1 new和delete操作内置类型2.2.2 new和delete操作自定义类型 三、new和delete的底层原理3.1 operator new与operator delete函数3.2 原理总结3.2.1 内置类型3.2.2 自定义类型 四、定位new表达…

开工啦~Spring 完美导入 IDEA

作者 | 阿Q来源 | 阿Q说代码有小伙伴私信我说想要研究下Spring的源码&#xff0c;想让我出一期教程来实现IDEA导入Spring源码&#xff0c;今天它来了~版本 &#xff1a;IDEA 2020.2.3 &#xff1b;Spring 5.0.x &#xff1b;gradle 4.4.1 &#xff1b;先从github上面把 spring …

基于MaxCompute分布式Python能力的大规模数据科学分析

简介&#xff1a; 如何利用云上分布式 Python 加速数据科学。 如果你熟悉 numpy、pandas 或者 sklearn 这样的数据科学技术栈&#xff0c;同时又受限于平台的计算性能无法处理&#xff0c;本文介绍的 MaxCompute 可以让您利用并行和分布式技术来加速数据科学。也就是说只要会用…