std中稳定排序算法_源代码库已开放 | 哈工大硕士生用 Python 实现了 11 种经典数据降维算法...

转自:AI开发者

网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。

72be0e065a158330b7419fc0eb9907a0.png

01  为什么要进行数据降维?


所谓降维,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d

通常,我们会发现大部分数据集的维度都会高达成百乃至上千,而经典的 MNIST,其维度都是 64。

75134d2afa9eec8a62025ceb62da87e7.png

MNIST 手写数字数据集

但在实际应用中,我们所用到的有用信息却并不需要那么高的维度,而且每增加一维所需的样本个数呈指数级增长,这可能会直接带来极大的「维数灾难」;而数据降维就可以实现:

  • 使得数据集更易使用

  • 确保变量之间彼此独立

  • 降低算法计算运算成本

  • 去除噪音

一旦我们能够正确处理这些信息,正确有效地进行降维,这将大大有助于减少计算量,进而提高机器运作效率。而数据降维,也常应用于文本处理、人脸识别、图片识别、自然语言处理等领域。

265e5ede06146ba4e178e5696a0035e7.png

02  数据降维原理


往往高维空间的数据会出现分布稀疏的情况,所以在降维处理的过程中,我们通常会做一些数据删减,这些数据包括了冗余的数据、无效信息、重复表达内容等。

例如:现有一张 1024*1024 的图,除去中心 50*50 的区域其它位置均为零值,这些为零的信息就可以归为无用信息;而对于对称图形而言,对称部分的信息则可以归为重复信息。

d77c9743156ee60136480c95fd645993.png

因此,大部分经典降维技术也是基于这一内容而展开,其中降维方法又分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。

  • 线性降维方法:

      PCA 、ICA LDA、LFA、LPP(LE 的线性表示)

  • 非线性降维方法:

      基于核函数的非线性降维方法——KPCA 、KICA、KDA

      基于特征值的非线性降维方法(流型学习)——ISOMAP、LLE、LE、LPP、LTSA、MVU

哈尔滨工业大学计算机技术专业的在读硕士生 Heucoder 则整理了 PCA、KPCA、LDA、MDS、ISOMAP、LLE、TSNE、AutoEncoder、FastICA、SVD、LE、LPP 共 12 种经典的降维算法,并提供了相关资料、代码以及展示,下面将主要以 PCA 算法为例介绍降维算法具体操作。

03  主成分分析(PCA)降维算法


PCA 是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督降维算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,属于线性降维方法。与 PCA 相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。

c118744d78e4c6ae3304d005cbc40d6f.png

最大方差理论降维原理

将一组 N 维向量降为 K 维(K 大于 0,小于 N),其目标是选择 K 个单位正交基,各字段两两间 COV(X,Y) 为 0,而字段的方差则尽可能大。因此,最大方差即使得投影数据的方差被最大化,在这过程中,我们需要找到数据集 Xmxn 的最佳的投影空间 Wnxk、协方差矩阵等,其算法流程为:

  • 算法输入:数据集 Xmxn;

  • 按列计算数据集 X 的均值 Xmean,然后令 Xnew=X−Xmean;

  • 求解矩阵 Xnew 的协方差矩阵,并将其记为 Cov;

  • 计算协方差矩阵 COv 的特征值和相应的特征向量;

  • 将特征值按照从大到小的排序,选择其中最大的 k 个,然后将其对应的 k 个特征向量分别作为列向量组成特征向量矩阵 Wnxk;

  • 计算 XnewW,即将数据集 Xnew 投影到选取的特征向量上,这样就得到了我们需要的已经降维的数据集 XnewW。

8a35af3aa367f59aa53dcaada10b4911.png

最小误差理论降维原理

而最小误差则是使得平均投影代价最小的线性投影,这一过程中,我们则需要找到的是平方错误评价函数 J0(x0) 等参数。

详细步骤可参考《从零开始实现主成分分析 (PCA) 算法》:

https://blog.csdn.net/u013719780/article/details/78352262 

04  主成分分析(PCA)代码实现


2f1e33b1bc14d3ce2a69105c42475f6e.png

关于 PCA 算法的代码如下:

from __future__ import print_functionfrom sklearn import datasetsimport matplotlib.pyplot as pltimport matplotlib.cm as cmximport matplotlib.colors as colorsimport numpy as np%matplotlib inlinedef shuffle_data(X, y, seed=None):   if seed:     np.random.seed(seed)   idx = np.arange(X.shape[0])   np.random.shuffle(idx)   return X[idx], y[idx]# 正规化数据集 Xdef normalize(X, axis=-1, p=2):   lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))   lp_norm[lp_norm == 0] = 1   return X / np.expand_dims(lp_norm, axis)# 标准化数据集 Xdef standardize(X):   X_std = np.zeros(X.shape)   mean = X.mean(axis=0)   std = X.std(axis=0)   # 做除法运算时请永远记住分母不能等于 0 的情形   # X_std = (X - X.mean(axis=0)) / X.std(axis=0)    for col in range(np.shape(X)[1]):     if std[col]:       X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]   return X_std# 划分数据集为训练集和测试集def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):   if shuffle:     X, y = shuffle_data(X, y, seed)   n_train_samples = int(X.shape[0] * (1-test_size))   x_train, x_test = X[:n_train_samples], X[n_train_samples:]   y_train, y_test = y[:n_train_samples], y[n_train_samples:]   return x_train, x_test, y_train, y_test# 计算矩阵 X 的协方差矩阵def calculate_covariance_matrix(X, Y=np.empty((0,0))):   if not Y.any():      Y = X   n_samples = np.shape(X)[0]   covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))   return np.array(covariance_matrix, dtype=float)# 计算数据集 X 每列的方差def calculate_variance(X):   n_samples = np.shape(X)[0]   variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))   return variance# 计算数据集 X 每列的标准差def calculate_std_dev(X):   std_dev = np.sqrt(calculate_variance(X))   return std_dev# 计算相关系数矩阵def calculate_correlation_matrix(X, Y=np.empty([0])):   # 先计算协方差矩阵   covariance_matrix = calculate_covariance_matrix(X, Y)   # 计算 X, Y 的标准差   std_dev_X = np.expand_dims(calculate_std_dev(X), 1)   std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)   correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))   return np.array(correlation_matrix, dtype=float)class PCA():   """   主成份分析算法 PCA,非监督学习算法.   """   def __init__(self):     self.eigen_values = None     self.eigen_vectors = None     self.k = 2   def transform(self, X):     """      将原始数据集 X 通过 PCA 进行降维     """     covariance = calculate_covariance_matrix(X)     # 求解特征值和特征向量     self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)     # 将特征值从大到小进行排序,注意特征向量是按列排的,即 self.eigen_vectors 第 k 列是 self.eigen_values 中第 k 个特征值对应的特征向量     idx = self.eigen_values.argsort()[::-1]     eigenvalues = self.eigen_values[idx][:self.k]     eigenvectors = self.eigen_vectors[:, idx][:, :self.k]     # 将原始数据集 X 映射到低维空间     X_transformed = X.dot(eigenvectors)     return X_transformeddef main():   # Load the dataset   data = datasets.load_iris()   X = data.data   y = data.target   # 将数据集 X 映射到低维空间   X_trans = PCA().transform(X)   x1 = X_trans[:, 0]   x2 = X_trans[:, 1]   cmap = plt.get_cmap('viridis')   colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]   class_distr = []   # Plot the different class distributions   for i, l in enumerate(np.unique(y)):       _x1 = x1[y == l]       _x2 = x2[y == l]       _y = y[y == l]       class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))   # Add a legend   plt.legend(class_distr, y, loc=1)   # Axis labels   plt.xlabel('Principal Component 1')   plt.ylabel('Principal Component 2')   plt.show()if __name__ == "__main__":   main()

最终,我们将得到降维结果如下。其中,如果得到当特征数 (D) 远大于样本数 (N) 时,可以使用一点小技巧实现 PCA 算法的复杂度转换。

07c6288d3f15d45810c9043d847089eb.png

PCA 降维算法展示

当然,这一算法虽然经典且较为常用,其不足之处也非常明显。它可以很好的解除线性相关,但是面对高阶相关性时,效果则较差;同时,PCA 实现的前提是假设数据各主特征是分布在正交方向上,因此对于在非正交方向上存在几个方差较大的方向,PCA 的效果也会大打折扣。

05  其它降维算法及代码地址


  • KPCA(kernel PCA)

KPCA 是核技术与 PCA 结合的产物,它与 PCA 主要差别在于计算协方差矩阵时使用了核函数,即是经过核函数映射之后的协方差矩阵。

引入核函数可以很好的解决非线性数据映射问题。kPCA 可以将非线性数据映射到高维空间,在高维空间下使用标准 PCA 将其映射到另一个低维空间。

42209198909fc5ad7e1f3d97a4010268.png

KPCA 降维算法展示

详细内容可参见 《Python 机器学习》之特征抽取——kPCA:

https://blog.csdn.net/weixin_40604987/article/details/79632888 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/blob/master/codes/PCA/KPCA.py

  • LDA(Linear Discriminant Analysis)

LDA 是一种可作为特征抽取的技术,其目标是向最大化类间差异,最小化类内差异的方向投影,以利于分类等任务即将不同类的样本有效的分开。LDA 可以提高数据分析过程中的计算效率,对于未能正则化的模型,可以降低维度灾难带来的过拟合。

f822d5026aa26f46cbc1c87ff2cb4ad4.png

LDA 降维算法展示

详细内容可参见《数据降维—线性判别分析(LDA)》:

https://blog.csdn.net/ChenVast/article/details/79227945 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LDA 

  • MDS(multidimensional scaling)

MDS 即多维标度分析,它是一种通过直观空间图表示研究对象的感知和偏好的传统降维方法。该方法会计算任意两个样本点之间的距离,使得投影到低维空间之后能够保持这种相对距离从而实现投影。

由于 sklearn 中 MDS 是采用迭代优化方式,下面实现了迭代和非迭代的两种。

2c07bf644c065d5e3ffda490c6ba869d.png

MDS 降维算法展示

详细内容可参见《MDS 算法》

https://blog.csdn.net/zhangweiguo_717/article/details/69663452 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/MDS 

  • ISOMAP

Isomap 即等度量映射算法,该算法可以很好地解决 MDS 算法在非线性结构数据集上的弊端。

MDS 算法是保持降维后的样本间距离不变,Isomap 算法则引进了邻域图,样本只与其相邻的样本连接,计算出近邻点之间的距离,然后在此基础上进行降维保距。

59b2ef0635fd31acd1c8e76539a812d8.png

ISOMAP 降维算法展示

详细内容可参见《Isomap》

https://blog.csdn.net/zhangweiguo_717/article/details/69802312 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/ISOMAP 

  • LLE(locally linear embedding)

LLE 即局部线性嵌入算法,它是一种非线性降维算法。该算法核心思想为每个点可以由与它相邻的多个点的线性组合而近似重构,然后将高维数据投影到低维空间中,使其保持数据点之间的局部线性重构关系,即有相同的重构系数。在处理所谓的流形降维的时候,效果比 PCA 要好很多。

9ddfaf9fb7afb01eddfccacc44ef252e.png

LLE 降维算法展示

详细内容可参见《LLE 原理及推导过程》

https://blog.csdn.net/scott198510/article/details/76099630 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LLE 

  • t-SNE

t-SNE 也是一种非线性降维算法,非常适用于高维数据降维到 2 维或者 3 维进行可视化。它是一种以数据原有的趋势为基础,重建其在低纬度(二维或三维)下数据趋势的无监督机器学习算法。

下面的结果展示参考了源代码,同时也可用 tensorflow 实现(无需手动更新参数)。

a563c4ed24970372ee34041e3cc7b2e9.png

t-SNE 降维算法展示

详细内容可参见《t-SNE 使用过程中的一些坑》:

http://bindog.github.io/blog/2018/07/31/t-sne-tips/ 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/T-SNE 

  • LE(Laplacian Eigenmaps)

LE 即拉普拉斯特征映射,它与 LLE 算法有些相似,也是以局部的角度去构建数据之间的关系。它的直观思想是希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近;以这种方式,可以得到一个能反映流形的几何结构的解。

01a6b8dcee7ad8c4dac798733c5d77d6.png

LE 降维算法展示

详细内容可参见《拉普拉斯特征图降维及其 python 实现》:

https://blog.csdn.net/HUSTLX/article/details/50850342 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LE 

  • LPP(Locality Preserving Projections)

LPP 即局部保留投影算法,其思路和拉普拉斯特征映射类似,核心思想为通过最好的保持一个数据集的邻居结构信息来构造投影映射,但 LPP 不同于 LE 的直接得到投影结果,它需要求解投影矩阵。

daa7245fa69eca7404644458948bc2ce.png

LPP 降维算法展示

详情请参见《局部保留投影算法 (LPP) 详解》:

https://blog.csdn.net/qq_39187538/article/details/90402961 

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LPP 

*《dimensionality_reduction_alo_codes》项目作者简介

Heucoder,目前是哈尔滨工业大学计算机技术在读硕士生,主要活跃于互联网领域,知乎昵称为「超爱学习」,其 github 主页地址为:https://github.com/heucoder。

Github 项目地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes 

496ce9dd339a6d5278e1f334a51159c6.png

a9ac4815c1d7b68ba1026b2c459efb75.png

长按订阅更多好文▼

778c8e73b5aa8806e31afa749898a3e9.png

回复: github 有惊喜 ↑↑↑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/512361.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

曲师大教务系统服务器,曲师大教务处信息门户入口地址

为了规范财务行为,加强财务管理,提高代管经费使用效益,提高项目建设质量,根据上级和学校有关财务规定,结合我校实际情况,特制定本办法。一、教务处代管的项目经费品牌特色专业建设经费、精品课程建设经费、…

云网管—云上构建网络自动化体系

简介: 云网管是基于阿里云网络多年技术和经验沉淀打造的云上智能网络管理运维平台,提供企业网络全生命周期管理运维的能力,让部署更快捷、运维更高效、网络更透明。 1.背景 云网管是基于阿里云网络多年技术和经验沉淀打造的云上智能网络管理…

【C++练级之路】【Lv.5】动态内存管理(都2023年了,不会有人还不知道new吧?)

目录 一、C/C内存分布二、new和delete的使用方式2.1 C语言内存管理2.2 C内存管理2.2.1 new和delete操作内置类型2.2.2 new和delete操作自定义类型 三、new和delete的底层原理3.1 operator new与operator delete函数3.2 原理总结3.2.1 内置类型3.2.2 自定义类型 四、定位new表达…

开工啦~Spring 完美导入 IDEA

作者 | 阿Q来源 | 阿Q说代码有小伙伴私信我说想要研究下Spring的源码,想让我出一期教程来实现IDEA导入Spring源码,今天它来了~版本 :IDEA 2020.2.3 ;Spring 5.0.x ;gradle 4.4.1 ;先从github上面把 spring …

基于MaxCompute分布式Python能力的大规模数据科学分析

简介: 如何利用云上分布式 Python 加速数据科学。 如果你熟悉 numpy、pandas 或者 sklearn 这样的数据科学技术栈,同时又受限于平台的计算性能无法处理,本文介绍的 MaxCompute 可以让您利用并行和分布式技术来加速数据科学。也就是说只要会用…

5新建没有头文件_开垦绿茵版图迎来“真金白银”保障,新建足球场地可获财政补贴...

本周二,国家发改委、体育总局、国务院足球改革发展部际联席会议办公室共同制定了《全国社会足球场地设施建设专项行动实施方案(试行)》。《方案》指出,对新建11人制标准足球场,每个球场补助200万元;对新建5人制、7人制(8人制)足球…

网站免费空间和服务器的区别,网站空间和服务器的区别

网站空间和服务器的区别 内容精选换一换汇总对象存储服务OBS的各项功能,并对其进行简单的介绍,帮助您从整体上了解OBS的功能特性。CCE Turbo集群是基于云原生基础设施构建的云原生2.0容器引擎服务,具备软硬协同、网络无损、安全可靠、调度智能…

基于 MaxCompute + Hologres 的人群圈选和数据服务实践

简介: 本文主要介绍如何通过 MaxCompute 进行海量人群的标签加工,通过 Hologres 进行分析建模,从而支持大规模人群复杂圈选场景下的交互式体验,以及基于API的数据服务最佳实践。 本文作者 刘一鸣 阿里云智能 高级产品专家 人群圈…

一款强大的 Kubernetes API 流量查看神器

作者 | 小碗汤来源 | 我的小碗汤mizu 是为 Kubernetes 提供的一个简单而强大的 API 流量查看器,可以查看微服务之间的所有 API 通信,以帮助调试和排除故障。相当于 Kubernetes 的 TCPDump 和 Wireshark。简单而强大的 CLI丰富的过滤规则API 调用实时监控…

Redis 巧用数据类型实现亿级数据统计

作者 | 码哥字节来源 | 码哥字节在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合,同时还要对集合中的数据进行统计排序。常见的场景如下:给一个 userId ,判断用户登陆状态;两亿…

2021杭州·云栖大会来了!门票免费预约!

2021杭州云栖大会,定了! 10月19日-22日,就在杭州云栖小镇 2场重磅主论坛上百场分论坛 超4万平米科技展 今年,云栖大会将首次免费开放 门票可在官网免费预约 入口现已开启 戳此预约,我们不见不散! ​ …

js 可以做什么东西_Deno需要做什么才能取代Node.js?

全文共1843字,预计学习时长5分钟Deno是一个Javascript/TypeScript的运行时,旨在取代Node.js的地位。它拥有广泛功能,讨论度非常高,在Github上有将近68000个星星:既然这么受欢迎,那么有人要问了:…

37 手游基于 Flink CDC + Hudi 湖仓一体方案实践

简介: 介绍了 37 手游为何选择 Flink 作为计算引擎,并如何基于 Flink CDC Hudi 构建新的湖仓一体方案。 本文作者是 37 手游大数据开发徐润柏,介绍了 37 手游为何选择 Flink 作为计算引擎,并如何基于 Flink CDC Hudi 构建新的湖…

手把手搭建一个容器化+代理网关+可视化管理环境

作者 | togettoyou来源 | SuperGopher前言本文主要分享个人服务器的应用部署方案现状,容器化代理网关可视化管理。准备阶段我购买的是腾讯云服务器(2 核 4GB 3Mbps)域名也是在腾讯云备案过的,提前准备域名解析配置环境安装 Docker…

漫画 | 一口气搞懂 Serverless !

简介: 第二届云原生编程挑战赛为热爱技术的年轻人提供一个挑战世界级技术问题的舞台,希望用技术为全社会创造更大价值。 作者 | 刘欣 呃,我可能是别人眼中所说的不用奋斗的一代。 大家喜欢听的什么多姿多彩的生活,我都经历过一…

OpenKruise v0.10.0 新特性 WorkloadSpread 解读

简介: 针对需求,OpenKruise 在 v0.10.0 版本中新增了 WorkloadSpread 特性。目前它支持配合 Deployment、ReplicaSet、CloneSet 这些 workload,来管理它们下属 Pod 的分区部署与弹性伸缩。下文会深入介绍 WorkloadSpread 的应用场景和实现原理…

CSS 状态管理,玩出花样了!

作者 | 零一来源 | 前端印象CSS用于交互的方式无非就那么几种:伪类::hover、:link、:active ...动画:animation过渡动画:transition这些交互方式组合起来,真的可以玩出一些花样,例如我们本文的主题&#xf…

告别Kafka Stream,让轻量级流处理更加简单

简介: 还在花精力去选型Kafka组件去做清洗转化?来试试Kafka ETL任务功能! 一说到数据孤岛,所有技术人都不陌生。在 IT 发展过程中,企业不可避免地搭建了各种业务系统,这些系统独立运行且所产生的数据彼此独…

元宇宙“性骚扰”现象频出,Meta推出“个人结界”能保护好女玩家吗?

作者 | 小码君来源 | 抓码青年元宇宙,可以说是最近最炙手可热的概念了。各大厂纷纷入局元宇宙,Faceebook甚至将总公司名字都改名为Meta。不过盯上元宇宙的可不止资本大鳄,还有一些不怀好意的色狼。据外媒报道称,在Meta的Oculus设备…

【CDS技术揭秘系列 01】阿里云CDS-OSS容灾大揭秘

简介: 本文主要阐述 CDS 产品中 OSS 服务在容灾方面的部署形态以及实现的其本原理。 容灾功能可以保证用户一份数据在多个地方存在冗余备份,当某个机房出现极端异常(比如物理损毁)情况下,数据也不会出现丢失&#xff1…