Serverless 遇到 FinOps,云成本问题有解了!

1828bc62702c0f67382bc8403553decc.gif

Key Takeaways:

1. 尽管 Serverless 的迅猛发展吸引了广泛深入的关注,Serverless 函数总成本的事先估计仍缺乏有效的理论指导。本文基于 FunctionGraph 在 Serverless 领域的 FinOps 探索和实践,提出业界首个 Serverless 函数总成本估计模型。

2. 根据对成本模型的关键因素分析,提出五大类函数运行成本的优化方法;同时,为更好地帮助用户实现降本增效,华为云首次提出透明、高效、一键式的 “用户函数成本研究中心”。

作者 | 历川、平山、冯嘉

出品 | CSDN(ID:CSDNnews)

Serverless 精确到毫秒级的按用付费模式使得用户不再需要为资源的空闲时间付费。然而,对于给定的某个应用函数,由于影响其计费成本的因素并不唯一,使得用户对函数运行期间的总计费进行精确的事先估计变成了一项困难的工作。

以传统云资源的周期性租赁模式为例,通过周期数乘以周期单价,用户可以很容易地估计出租赁期间的总费用,形成清晰的心理账户预期,即使在云平台采用阶梯定价或价格歧视策略的情形下,计算租赁总成本也不是一件难事。

但在Serverless场景中,事先估计函数总成本仍缺乏有效的理论指导。一方面,影响函数计费的关键因素不唯一,如包括函数内存规格、单实例并发度、函数执行时长等;另一方面,函数调用流量的波动通常具有随机性和非平稳性,使得基于流量的“按用计费”具有较大的不确定性。

当然,寻找函数计费的理论指导主要是为用户评估函数总成本提供一种有效依据,但更加重要地,如何进一步利用估计模型,帮助用户优化应用函数及其配置选择,进而显著降低用户函数总成本,是Serverless领域中,FinOps亟待回答的问题。

FinOps聚焦云上资源管理和成本优化,通过有机链接技术、业务、和财务专业人士,来优化用户、企业、组织的云资源成本,提高云上业务的投入-产出比 [1]。本文结合华为云FunctionGraph在Serverless领域的FinOps探索和实践,剖析Serverless场景下的函数计费模式和关键影响因素,介绍一种对函数运行期间总计费进行事先估计的模型框架;更重要地,该模型为帮助用户优化函数运行总成本、提升用户云上Serverless资源管理效能,实现经济型 (Economical) Serverless 提供有效依据。

6ac54e2dc16c1ff3fe0908243c04e5d6.png

名词解释与背景知识

首先对表1所列的几个概念做简要说明。

表1:Serverless函数常见名词

内存规格

Memory

MB

单实例最大并发度

Maximum Requests per Instance

/

函数执行时延

Function Execution Time

ms

单函数最大实例数

Maximum Instances per Function

/

内存规格 (Memory):内存规格也即函数规格、函数实例规格,表示Serverless平台为函数的单个实例所分配的资源大小,一般表示为函数可使用的内存大小,由用户指定;实例可使用的CPU份额与内存大小成正比。Serverless云平台通常提供多种规格供用户选择,以FunctionGraph为例,用户可选15种函数规格,如图1所示。

7401dc8d7ffe14a2f38bab9032e24238.png

图1:FunctionGraph提供多种函数内存规格

函数执行时延 (Function Execution Time):这里指完成一次调用请求响应的过程中,函数本身执行所消耗的时间,主要由函数代码逻辑决定。一般地,对于CPU密集型的函数,增大函数资源规格(内存-CPU Share),可以显著降低函数执行时延。但对于消耗大部分时间在网络IO等操作上的函数,增大资源规格对执行时延的改善则非常有限。

单实例最大并发度 (Maximum Requests per Instance):函数的单个实例可以同时处理的最大请求数,主要适用于函数执行过程中有显著时间在等待下游服务返回的场景,如访问数据库操作或磁盘IO等。对于相同的流量负载,提高函数的单实例并发度可以降低按量实例个数,为用户节省计费,同时,也可以降低函数调用请求的冷启动比例。

单函数最大实例数 (Maximum Instances per Function):指同一函数同一时刻下同时运行的实例数上限。对用户来说,最大实例数可以防止异常流量洪峰下或函数发生故障时由于云平台的过度扩容而导致的费用失控;对云平台来说,最大实例数可以防止异常情况下平台资源被部分函数耗光,从而保障不同函数间的性能隔离。

575f4e9be0f85da85ce007e48ed5003c.png

函数计费与成本模型

单实例视角下的函数计费估计模型,可参考 [2]。在真实生产环境中,除异步函数外,Serverless云平台通常采用FCFS(First Come First Serve)的方式响应调用请求,对于函数流量的潮汐波动,平台通过自动扩缩容实例进行自适应,系统中运行的并发实例数随时间的变化,可以由一个分段常线性函数完全刻画,如图2所示。

738906a21eb2a481f224cdf6f0702288.png

图2:函数并发实例数随扩缩容过程的变化

尽管不同Serverless云厂商之间的计费方法存在差异,函数计费一般主要包括两部分:对函数所使用资源的计费以及对请求次数的计费,表示如下:

1fd70d0ef4e7d2bcd2c123431663caf6.png

其中, 6dab2d84cfd27da8f26fcc9d4c1b1f81.png表示对资源使用的计费,单位为GB-秒(GB-second), 表示对调用次数的计费。

为方便计算,用e95419f484bbc32a0beffa4fbbbb4ec4.png表示函数的资源规格,单位为GB。例如,对于128MB规格的函数,其14dc315411f6da6337533e808d22c0a7.png ;c表示该函数的单实例并发数,μ表示函数的平均执行时延,单位为毫秒;并用α(0<α<1)表示Serverless平台的调用链路性能,在最理想的情况下,该指标为1,表示在当前Serverless平台上,该函数响应单个请求的端到端时延等于函数执行时延μ本身,不同Serverless平台的α值可能略有不同,但通常在0.9以上。给定上述指标,可以得到单实例在理想状况下的请求处理能力, 即理论上每秒可以响应的调用次数为:

06d6bcf02349a8b007c718575836189b.png

因此,单实例的实际请求处理能力则为:

959c98bf774a2fdff2d9fbd02ef59a59.png

我们以一个月作为估计周期。假设一个月内,函数共经历了n次扩、缩容,形成了n个常线性子区间(如图2所示)。先考察单个子区间530009e971e2dfd6034ec4c09754c664.png内的计费成本模型,总成本模型则为各个连续子区间的加和。

在时间窗口a5ee762a252ef9749afefe0e8d22a643.png内,假设函数调用次数为1dc2fb18fdb3bd46dc919c645c54d1b4.png,则该时间窗内的并发实例数为:

b594b66cf1d2a3265b5b22f994fea453.png

对应的资源计费部分则可表示为:

eef8d5647d678781dd42aec9ea83566c.png

其中,c6c75c37f72c5c0a316bfd797bc5f786.png表示每GB-秒的资源的计费单价。现在,记第i个子区间为71c3cbf8bfb1104defca6cf951d6b2a0.png,则一个月内的总成本模型可以估计为:

b6b61b17352a0bef3de86c7e37cffb42.png

其中,9168cb1f9d53c1997d615c8958ce2500.png表示每次调用的计费单价, 6422af805dd6cd1347dc4a1fc14b84b9.png表示函数该月总流量,cac5abb2f0240972726f7e9d49374347.png为云平台提供的月度免费计量时间,c38587371327ce164df5853f1fca6a44.png为月度免费计量调用次数。

在上式中,单实例并发度c和函数规格b3b4fcfaadb73f8200dee5abc14f3349.png可以认为在用户配置之后属于常数;α属于平台侧参数,也可视作常数;对于函数执行时延μ,实际中通常会由于冷热启动差异、网络抖动、调用请求入参等的不同而波动,且考虑到Serverless计费是精确到毫秒级别的,因此严格意义上不能被视作为常数。不过,作为估计模型,这里暂且假定μ也为常数。综上,总成本模型可以表示为:

e4d2e7ebb4465826ea4ecf391f526aac.png

后半部分代表云平台提供的免计费总量,与函数调用流量以及函数配置无关。

50cb270b8da05e4f87bd81158e66c2e8.png

成本优化方法讨论

有了函数成本的估计模型,就可以对影响用户成本的关键因素进行讨论。在估计式 (1) 中,忽略云平台提供的免计费总量,函数月度总成本的结构如下:

0b86098e8e823467ba1d11c35272e596.png

Point 1:优化函数代码逻辑本身,降低函数执行时延

对于同样的函数流量负载,更低的执行时延μ可以为用户节省更多计费成本。在用户业务逻辑允许的前提下,不断优化函数代码、提高函数执行效率是软件工程本身天然的诉求,但在Serverless场景下,这一点显得更为迫切。

具体地,考虑采用Python、Nodejs等轻量化编程语言,减少函数初始化配置中的非必要项,将连接其它服务如数据库等的操作尽量移到函数执行入口之前的初始化阶段完成,简化代码逻辑等。

另外,为帮助用户掌握函数运行情况,FunctionGraph为应用函数提供深度可视化的可观测能力,支持丰富的观测指标配置,包括调用次数、错误次数、运行时延等,如图3所示的函数运行时间监控示例。 

d151acaf36fde26cbd0fca520a2fc01f.png

图3: FunctionGraph 函数运行时间监控示例

Point 2: 优化函数代码包、依赖包、镜像大小

当函数调用触发冷启动的时候,从计费角度看,冷启动时延包含在执行时延μ中一起计费,而冷启动中有相当比例的时延消耗在云平台从第三方存储服务(如华为云对象存储服务OBS)中下载用户的代码包、依赖包,或从镜像仓库服务中拉取用户应用镜像,如图4所示。

尽管为了优化冷启动性能,目前大部分云平台均会采用各类缓存机制,对用户代码和镜像进行预缓存,但实例启动中消耗在用户代码加载上的时延仍然十分显著。因此,应尽可能优化函数代码包大小,包括对依赖包、镜像等进行瘦身,进而降低计费时长。

068169e24ec8cc2d058f221c71d792ff.png

图4:冷热启动下的计费时长及优化点

Point 3: 编写功能聚焦的轻量化函数

在Serverless编程框架下,尽可能将函数编写为轻量型的、功能聚焦的程序代码,即“functions should be small and purpose-built”[3];让“一个函数只做一件事”,一方面,功能单一的函数,运行时延也更容易针对性地进行优化;另一方面,当一个函数内同时实现多个功能的时候,大概率会以所有功能都在性能上同时做出妥协为结果,最终提高了函数运行期间总计费。

f728a38a61b960f6ab241fe5ed0b6263.png

图5:华为云FunctionGraph 函数流示例

若应用函数的确需要提供多个功能,可以考虑将大函数分解为多个小函数,然后通过函数编排的方式实现整体逻辑, 如图5所示的FunctionGraph函数流功能。大函数分解也是Serverless计算中用户处理超时(timeout)等异常场景的最佳实践之一 [4]。

Point 4: 业务模型支持的前提下,采用单实例多并发

从公式(2)的函数成本结构中可以看出,在用户业务模型支持的前提下,配置一定的单实例并发度c,可以有效降低函数月度总成本;若用户不进行配置,云平台默认值通常为1,即单个实例同一时刻只能处理一个请求;因此,在函数被并发调用的情形下,平台会启动多个实例进行响应,从而增大了计费实例数目,如图6所示;同时,采用单实例多并发,也能改善调用请求处于等待状态的尾时延。

0d4c8e31724d7d006addb043fa726474.png

图6:单实例并发度:计费时长视角和实例数视角

当然,单实例并发度并非越高越好,例如,过高的并发度设置会使得函数实例内多线程之间的资源竞争加剧(e.g., CPU contention),导致函数响应性能恶化,影响用户应用的QoS指标等。同时,如本文在背景知识中所提,并非所有的应用函数都适合设置单实例多并发。单实例多并发主要适用于函数执行过程中有相当比例的时延消耗在等待下游服务返回的场景,这类场景下,实例资源如CPU等有显著比例处于空闲等待状态,如访问数据库、消息队列等中间件、或磁盘IO、网络IO等。单实例多并发也需要用户在函数代码中对错误捕获(e.g., 考虑请求级别的错误捕获粒度)和全局共享变量的线程安全(e.g., 加锁保护)问题进行适配。

Point 5: 函数资源规格的选择需考虑对执行时延的影响

最后讨论函数资源规格的选择问题。从公式(2)明显可以看出,更大规格的实例内存de5e78ba9f919581cc5bf98345a030d4.png对应更高的计费成本。但内存规格的选择,需要同时考虑对函数执行时延μ的影响。从用户函数的角度看,函数执行时延除了由代码本身的业务逻辑决定之外,还受实例运行时可使用资源大小的影响。更大的实例规格,对应更大的可使用内存和更多的CPU份额,从而可能显著改善高内存占用型或CPU密集型函数的执行性能,降低执行时延;当然,这种改善也存在上限,超过某个资源规格后,资源的增加对降低函数执行时延的效果几乎可以忽略,如图7中虚线所表示的过程。上述事实表明,对于给定的用户函数,为降低总计费成本,需要配置合理的实例规格ce00325c7094b4b137d4ba2c5afd944a.png,使得b901d8744548520c0632b8effbf4e539.png尽可能取得最小值,如图7中实线所表示的过程。

9e95d3dd545a890640e83a3f06b734bd.png

图7:函数规格的选择需同时考虑对成本和执行时延的影响

例如,考虑实例规格的初始配置为ffe8415b2d31a12d4c8136109fa62aa2.png(例如从最小规格开始,i.e., 128MB), 经测试该规格下函数执行时延为adf9767ed02e593a1237f15f5d3fc4c5.png,则可以得到基线e0ea28e8f52403c23e447f68d4a48398.png,然后逐步增大资源规格,测试对应执行时延,直到某一组5f20b8df93543c32581ed669af9cdcdd.png出现,使得:

1cb66c5dac87de9fba77077dc2c0adef.png

此时表明,资源增大对计费成本的边际提升已经超过了对执行时延的边际改善,因此,从成本的角度看,此时的8e6d0ae0b79c1fa0e1e959ab16d7b26a.png为帕累托最优解,即最佳规格,对应执行时延为4cda969412d596781bf54ef301d67d76.png

最后,图8对上述几个决定函数成本的关键因素做了一个总结,其中,箭头方向表示元素之间的直接影响,“+”号代表成正比,“-”代表成反比。

964df4946c3a833b9a1328e516412a76.png

图8:函数计费成本的关键因素分析

d59b5fcabba8d9b4a2dc575df2c49a3a.png

Serverless函数成本研究中心

为用户降本增效,是FunctionGraph的核心理念。尽管前文分析的五种函数成本优化手段是站在用户视角下的讨论,但我们认为这些问题远不是只属于用户需要考虑的范围;相反地,FunctionGraph在持续探索如何最大限度地帮助用户在Serverless领域实现最佳的FinOps效果,让用户能够真正享受到Economical Serverless的福利;例如,在实例级别的深度可视化、可观测性前提下,帮助用户实现函数FinOps全流程的自动化,为用户提供透明、高效、一键式的函数资源管理和成本优化服务。

886c7e855ddbb18c6c39c25fcc0f782b.png

28db2ab10040c1820b454d21e367b4b7.png

图9. 在线式资源消耗感知与规格动态推荐

为此,基于内部实践,FunctionGraph 将于近期推出“用户函数成本研究中心 – Cost Analysis and Optimization Center”, 为用户提供包括离线式函数最佳配置调优(offline power tuning)、在线式资源消耗感知与规格动态推荐(online resource recommendation, 如图9所示)、预测性函数弹性预览(predictive auto-scaling preview)等在内的多个重量级特性服务,最大限度降低用户实现函数FinOps的技术门槛,为用户业务开发、Serverless化改造等提供极致便捷性。

e2817ede3a9f0acd2afc7107895c7287.png

总结与展望

本文主要讨论了Serverless计算场景下的FinOps问题,给出了业界首个用户函数总成本估计模型,并根据该模型,为用户优化应用函数、提升Serverless资源管理效能、降低总成本提供理论参考和实践依据。

一项新兴技术领域的兴起,首先需要回答的问题是“Why & Value”,  FunctionGraph作为华为元戎加持的下一代Serverless函数计算与编排服务,结合FinOps等技术理念,持续为用户提供经济型Serverless服务。后续我们将分享更多围绕通用全场景Serverless的前沿理论及其案例实践,回馈社区,包括FunctionGraph在微服务Serverless化上的实践经验等。

参考资料:

[1] What is FinOps: https://www.finops.org/introduction/what-is-finops/ 

[2] Running Lambda Functions Faster and Cheaper: https://levelup.gitconnected.com/running-lambda-functions-faster-and-cheaper-416260fbc375?gi=4370e4c57684 

[3] AWS Lambda Cost Optimizations Strategies That Work. https://dashbird.io/blog/aws-lambda-cost-optimization-strategies/ 

[4] Timeout Best Practices. https://lumigo.io/learn/aws-lambda-timeout-best-practices/ 

作者介绍:华为云Serverless研发专家历川、华为云中间件Serverless负责人平山、华为云中间件首席专家冯嘉。

dcc78bd68af85d7d515977bc5df5bbe3.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apsara Stack 技术百科 | 联结良性生态,筑千行百业的数字基石

简介&#xff1a;作为现今IT领域最重要的课题&#xff1a;基础设施云化&#xff0c;离不开与伙伴的携手合作&#xff0c;如何让云上解决方案能充分释放价值的同时形成一个相互依存的自循环生态系统&#xff0c;混合云君来跟你聊聊~ 生态系统这个词在维基百科上的定义是&#xf…

用户留存建模实践

简介&#xff1a;在流量分析型产品的用户分析模块中&#xff0c;留存、互访、新老客构成等数据都是有效衡量用户粘性与促活召回的关键性指标&#xff1b;但是&#xff0c;我们发现在很多流量运营的业务场景中&#xff0c;留存分析建模都显著存在着设计和计算上的诸多问题。本文…

ACK One 构建应用系统的两地三中心容灾方案

简介&#xff1a;本文侧重介绍了通过 ACK One 的多集群应用分发功能&#xff0c;可以帮助企业管理多集群环境&#xff0c;通过多集群主控示例提供的统一的应用下发入口&#xff0c;实现应用的多集群分发&#xff0c;差异化配置&#xff0c;工作流管理等分发策略。结合 GTM 全局…

英特尔On技术创新峰会:助力开发者解决当前和未来的挑战

第二届英特尔On技术创新峰会于2022年9月27日在美国加利福尼亚州圣何塞市开幕。在本届峰会上&#xff0c;英特尔向齐聚一堂的软硬件开发者们分享了在构建以开放、选择和信任为原则的生态系统方面的最新进展——从推动开放标准以使“芯片系统”&#xff08;systems of chips&…

你不知道的 HTTPS 压测

简介&#xff1a;随着互联网安全规范的普及&#xff0c;使用 HTTPS 技术进行通信加密&#xff0c;实现网站和 APP 的可信访问&#xff0c;已经成为公认的安全标准。本文将介绍针对 HTTPS 协议做压力测试的关注点&#xff0c;以及使用 PTS 做 HTTPS 压测的技术优势和最佳实践。 …

数据湖—Delta Lake

简介&#xff1a;Delta Lake 是 DataBricks 公司开源的、用于构建湖仓架构的存储框架。能够支持 Spark&#xff0c;Flink&#xff0c;Hive&#xff0c;PrestoDB&#xff0c;Trino 等查询/计算引擎。作为一个开放格式的存储层&#xff0c;它在提供了批流一体的同时&#xff0c;为…

2022杭州云栖大会定档11月3日至5日:技术产品发布+超4万平科技展

9月28日消息&#xff0c;记者从云栖大会组委会获悉&#xff0c;2022杭州云栖大会将于11月3日至5日在杭州云栖小镇举办。今年云栖大会以“计算进化未来”为主题&#xff0c;在3天内设置两场主论坛&#xff0c;70多场数字技术、产业和生态分论坛&#xff0c;以及4万平米智能科技全…

阿里云RemoteShuffleService 新功能:AQE 和流控

简介&#xff1a;阿里云EMR 自2020年推出 Remote Shuffle Service(RSS)以来&#xff0c;帮助了诸多客户解决 Spark 作业的性能、稳定性问题&#xff0c;并使得存算分离架构得以实施。为了更方便大家使用和扩展&#xff0c;RSS 在2022年初开源(https://github.com/alibaba/Remot…

如何使用Delta Lake构建批流一体数据仓库

简介&#xff1a;Delta Lake是一个开源存储层&#xff0c;它为数据湖带来了可靠性。Delta Lake提供了ACID事务、可扩展的元数据处理&#xff0c;并统一了流式处理和批处理数据处理。Delta-Lake运行在现有数据湖之上&#xff0c;并且与Apache Spark API完全兼容。希望本篇能让大…

中国峰会|下一代云基础架构,赋能企业云上发展

点击上方入口立即【自由构建 探索无限】一起共赴年度科技盛宴&#xff01;马上点击“阅读原文”了解更多亚马逊云科技中国峰会让我们共同见证亚马逊的一小步云计算的一大步扫码【立即报名】直通大咖云集的亚马逊云科技中国峰会&#xff01;

Delta Lake基础介绍(商业版)

简介&#xff1a;介绍 Lakehouse 搜索引擎的设计思想&#xff0c;探讨其如何使用缓存&#xff0c;辅助数据结构&#xff0c;存储格式&#xff0c;动态文件剪枝&#xff0c;以及 vectorized execution 达到优越的处理性能。 作者&#xff1a;李洁杏&#xff0c;Databrick资深软…

云原生数仓如何破解大规模集群的关联查询性能问题?

简介&#xff1a;AnalyticDB for PostgreSQL(以下简称ADB PG)是一款PB级的MPP架构云原生数据仓库。本文从ADB PG架构设计的角度出发&#xff0c;探讨Runtime Filter在ADB PG中的实现方案&#xff0c;并介绍了基于Bloom Filter的ADB PG Dynamic Join Filter功能技术细节。 作者 …

独家对话Python之父:人类大脑才是软件开发效率的天花板

【CSDN 编者按】十五年前&#xff0c;《程序员》杂志曾专访过 Python 之父 Guido van Rossum&#xff0c;一起探讨了 Python 3.0 的较为明显的新特性&#xff0c;即增加了对中文( Unicode )的支持。十五年过去&#xff0c;Python 的版本号只前进了一个数字&#xff0c;但是 Pyt…

淘系用户平台技术团队单元测试建设

简介&#xff1a;单元测试是工程交付前质量保障的第一环&#xff0c;也无疑是软件工程质量保障的重要基石&#xff0c;有效的单元测试能够提前发现90%以上的代码Bug问题&#xff0c;同时也能防止代码的腐化&#xff0c;在工程重构演进时起到至关重要的作用。 作者 | 问元 来源 …

阿里云弹性计算对视觉计算的思考与实践

简介&#xff1a;利用人类已有和将有的技术加之商业手段&#xff0c;实现对人类感官体验进行全方位升级。 4月21日&#xff0c;“2022英伟达数字孪生技术应用论坛”上&#xff0c;阿里云弹性计算产品专家张新涛为大家带来了题为《阿里云弹性计算在XR业务上的应用实践》的主题分…

游戏行业弹性计算最佳实践

简介&#xff1a;本篇主要介绍三大游戏场景&#xff1a;游戏服务、大数据运营、云游戏的架构特点&#xff0c;以及基于这些场景下的阿里云游戏行业计算基础设施选型与部署方案。 文丨寻野&#xff0c;阿里云弹性计算产品解决方案架构师 摘要&#xff1a;游戏一直以来是互联网…

三大特性,多个场景,Serverless 应用引擎 SAE 全面升级

简介&#xff1a;Serverless 应用引擎 SAE 凭借着天然技术优势&#xff0c;已经帮助成千上万家企业实现容器和微服务技术转型。近日&#xff0c;SAE不仅进一步提供了全套微服务能力&#xff0c;更为传统 Job 和 PHP 用户提供了全新的&#xff0c;更高效、更经济且可平滑迁移的解…

代码覆盖率在性能优化上的一种可行应用

简介&#xff1a;JavaScript 是前端应用主要语言&#xff0c;相较于其他平台编程语言&#xff0c;JS资源多数情况下要通过网络进行加载&#xff0c;那么代码的体积直接影响了页面加载执行时间。“无效的代码”的多寡直接影响到了我们的代码质量&#xff0c;所以度量代码的执行覆…

MaxCompute湖仓一体介绍

简介&#xff1a;本篇内容分享了MaxCompute湖仓一体介绍。 分享人&#xff1a;孟硕 阿里云 MaxCompute产品专家 视频链接&#xff1a;数据智能实战营-北京站 专题回顾 正文&#xff1a; 本篇内容将通过两个部分来介绍MaxCompute湖仓一体。 一、什么是 MaxCompute 湖仓一体…

云原生离线实时一体化数仓建设与实践

简介&#xff1a;本篇内容分享了云原生离线实时一体化数仓建设与实践。 分享人&#xff1a;刘一鸣 Hologres 产品经理 视频链接&#xff1a;数据智能实战营-北京站 专题回顾 正文&#xff1a; 本篇内容将通过五个部分来介绍云原生离线实时一体化数仓建设与实践。 一、离线实…