如何使用Delta Lake构建批流一体数据仓库

简介:Delta Lake是一个开源存储层,它为数据湖带来了可靠性。Delta Lake提供了ACID事务、可扩展的元数据处理,并统一了流式处理和批处理数据处理。Delta-Lake运行在现有数据湖之上,并且与Apache Spark API完全兼容。希望本篇能让大家更深入了解Delta Lake,最终可以实践到工作当中。

作者:

李元健,Deltabricks软件工程师

冯加亮,阿里云开源大数据平台技术工程师

Delta Lake是一个开源存储层,它为数据湖带来了可靠性。Delta Lake提供了ACID事务、可扩展的元数据处理,并统一了流式处理和批处理数据处理。Delta-Lake运行在现有数据湖之上,并且与Apache Spark API完全兼容。希望本篇能让大家更深入了解Delta Lake,最终可以实践到工作当中。

本篇文章将从3个部分介绍关于Delta Lake的一些特性:

  • Delta Lake的项目背景以及想要解决的问题
  • Delta Lake的实现原理
  • Live Demo

一、Delta Lake的项目背景以及想要解决的问题

1)背景

相信大家在构建数仓处理数据方面都很有经验,而产业界也耗费了大量的资源来构建相关的系统。

我们发现有半结构化数据、实时数据、批量数据,用户数据等一系列数据存储在各个地方,分别以不同的处理形式为用户提供服务。

那么我们期望的理想的系统是什么样的?

  • 更一体化或更加聚焦,让更专业的人干更专业的事情
  • 有同时处理流式和批量的能力
  • 可以提供推荐服务
  • 可以提供报警服务
  • 可以帮助用户分析一系列的问题

但现实情况却是:

  • 低质量、不可靠的数据导致一体化行进艰难。
  • 差强人意的性能不一定能达到实时的入库以及实时的查询要求。

在这样的背景下,Delta Lake应运而生。

2)想要解决的问题

下面用一个常见的用户场景为例,如果没有Delta Lake,该如何解决这样的问题。

这可能是一个最常见的Delta Lake场景,比如我们有一系列的流式数据,不停的从Kafka系统流入,我们期望具有实时处理的能力。与此同时,我们可以把数据周期性放在Delta Lake中。同时,我们需要整套系统的出口具有AI & Reporting能力。

1、历史查询

第一条处理流比较简单,比如通过Apach Spark直接使用Streaming Analytics打通实时流。

与此同时,需要离线流时,历史查询可以使用Lambda架构对应的方式。Apach Spark提供了很好的抽象设计,我们可以通过一种代码或API来完成流和实时的λ架构设计。

通过历史数据的查询,我们可以进一步使用Spark进行SQL分析,以及用Spark SQL的作业的形式来产生AI技术的能力。

2、数据校验

接下来我们需要面对的第一个问题就是数据的校验。
我们的流式数据和批量数据,假设以Lambda架构的形式存在时,如何确认我们在某一个时间点查出来的数据是对的?到底流式的数据和批量的数据差多少?我们的批量数据什么时候该与流式数据进行同步?

所以Lambda架构还需要引入Validation,这需要我们予以确认。尤其是像报表系统面向用户的这种精确的数据分析系统,Validation这一步骤不可或缺。

因此,也许我们需要一支旁支来解决流式和批量之间的同步问题,以及对应的验证问题。

3、数据修复

假设如上问题解得到了解决,在系统上了一段时间我们会发现,如我们对应的某个Partitioned数据出了问题,当天的脏数据在若干天之后需要修正。此时我们需要怎么办?

通常,我们需要停掉线上的查询后再修复数据,修复完数据后重新恢复线上的任务。如此折腾的过程,实际无形的给系统架构又增加了一个修复以及过去版本回复的能力。因此,Reprocessing诞生了。

4、数据更新

假设解决完了Reprocessing问题,我们在AI和Reporting最终的出口端,可以看到有新的一系列的需求。比如有一天业务部门或者上级部门、合作部门提出能否Schema Change,因为越来越多的人用数据,想把UserID这个维度加进去,此时该怎么处理?导到Delta Lake去加Schema、停留、对应的数据重新处理等一系列折腾。

所以大家可以看到解决了一个问题又会有新的问题。如果case by case的去解决会导致系统不停的往上打补丁。一个原本简单或者一体化的需求会变得越来越冗余和复杂。

5、理想中的Delta Lake

所以理想当中的Delta Lake应该长什么样?

是入口、出口对应的系统干对应的事情。唯一的核心就是Delta Lake层,即对应的数据处理以及数据入仓的整个过程可以做到:

  • 用连续处理的模式处理数据
  • 增量的数据也可以增量Streaming的方式去处理新到达的数据
  • 不需要再从批量和流式中做出选择。或者说批量和流式互相之间做出退让,在流式的时候需要考虑批量,在批量的时候要考虑流式的作用,不应该这样by design。
  • 如果我们可以一体化整个Delta Lake架构,自然而然就能降低维护成本。

二、Delta Lake的实现原理

1)Delta Lake具备的能力

下面我们看一下这一系列的问题是如何在Deltalake当中去解决的。

  1. 具备同时读写并且有数据一致性保证的能力。在Deltalake当中,Reader和Writer是通过快照机制来进行隔离,也就是说Reader和Writer可以以乐观锁的形式各自写入和读出,互不影响。
  2. 具备高吞吐从大表读元数据的能力。我们可以想象,当一个表变大之后,它本身的元数据、快照、Checkpoint版本以及变更Schema一系列所有的元数据操作本身就会变成一个大数据的问题。Delta Lake当中设计非常棒的一点就是本身将Meta Delta也视为大数据问题,通过Spark框架自身处理大表的元数据问题。所以在Delta中,不必担心会出现单点处理Meta Delta焊死的情况。
  3. 历史数据以及脏数据的回滚。我们需要有Time Travel的能力来回溯到某一个时间点进行数据清洗。
  4. 具备在线处理历史数据的能力。在历史数据回填中,我们依然可以实时处理当前流入的新数据,无需停留,也无需考虑哪些是实时,哪些是离线。
  5. 可以在不阻断下游作业的前提下处理迟到的数据,可以直接入表。

以上5点完全解决之后,我们就可以用Delta Lake来替代Lambda架构,或者说我们一系列批流分制的架构设计可以使用Delta Lake架构。

2)基于Delta Lake的架构设计

什么是基于Delat Lake的架构设计?

Delat Lake的架构设计中一系列的元数据或者最低的级别就是表。可以将我们的数据一层一层的分成基础数据表,中间数据表以及最终的高质量数据表。所有的一切只需要关注的就是表的上游和下游,它们之间的依赖关系是不是变得更加的简单和干净。我们只需要关注业务层面的数据组织,所以Delat Lake是统一批量、流式的持续数据流的模型。

三、Demo

以下通过Demo的形式演示如何在Databricks数据洞察里搭建批流一体数据仓库的操作,解决生产环境的问题。

Demo演示视频:如何使用Delta Lake构建批流一体数据仓库【Databricks 数据洞察公开课】-云视频-阿里云开发者社区

原文链接

本文为阿里云原创内容,未经允许不得转载。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510905.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中国峰会|下一代云基础架构,赋能企业云上发展

点击上方入口立即【自由构建 探索无限】一起共赴年度科技盛宴!马上点击“阅读原文”了解更多亚马逊云科技中国峰会让我们共同见证亚马逊的一小步云计算的一大步扫码【立即报名】直通大咖云集的亚马逊云科技中国峰会!

Delta Lake基础介绍(商业版)

简介:介绍 Lakehouse 搜索引擎的设计思想,探讨其如何使用缓存,辅助数据结构,存储格式,动态文件剪枝,以及 vectorized execution 达到优越的处理性能。 作者:李洁杏,Databrick资深软…

云原生数仓如何破解大规模集群的关联查询性能问题?

简介:AnalyticDB for PostgreSQL(以下简称ADB PG)是一款PB级的MPP架构云原生数据仓库。本文从ADB PG架构设计的角度出发,探讨Runtime Filter在ADB PG中的实现方案,并介绍了基于Bloom Filter的ADB PG Dynamic Join Filter功能技术细节。 作者 …

独家对话Python之父:人类大脑才是软件开发效率的天花板

【CSDN 编者按】十五年前,《程序员》杂志曾专访过 Python 之父 Guido van Rossum,一起探讨了 Python 3.0 的较为明显的新特性,即增加了对中文( Unicode )的支持。十五年过去,Python 的版本号只前进了一个数字,但是 Pyt…

淘系用户平台技术团队单元测试建设

简介:单元测试是工程交付前质量保障的第一环,也无疑是软件工程质量保障的重要基石,有效的单元测试能够提前发现90%以上的代码Bug问题,同时也能防止代码的腐化,在工程重构演进时起到至关重要的作用。 作者 | 问元 来源 …

阿里云弹性计算对视觉计算的思考与实践

简介:利用人类已有和将有的技术加之商业手段,实现对人类感官体验进行全方位升级。 4月21日,“2022英伟达数字孪生技术应用论坛”上,阿里云弹性计算产品专家张新涛为大家带来了题为《阿里云弹性计算在XR业务上的应用实践》的主题分…

游戏行业弹性计算最佳实践

简介:本篇主要介绍三大游戏场景:游戏服务、大数据运营、云游戏的架构特点,以及基于这些场景下的阿里云游戏行业计算基础设施选型与部署方案。 文丨寻野,阿里云弹性计算产品解决方案架构师 摘要:游戏一直以来是互联网…

三大特性,多个场景,Serverless 应用引擎 SAE 全面升级

简介:Serverless 应用引擎 SAE 凭借着天然技术优势,已经帮助成千上万家企业实现容器和微服务技术转型。近日,SAE不仅进一步提供了全套微服务能力,更为传统 Job 和 PHP 用户提供了全新的,更高效、更经济且可平滑迁移的解…

代码覆盖率在性能优化上的一种可行应用

简介:JavaScript 是前端应用主要语言,相较于其他平台编程语言,JS资源多数情况下要通过网络进行加载,那么代码的体积直接影响了页面加载执行时间。“无效的代码”的多寡直接影响到了我们的代码质量,所以度量代码的执行覆…

MaxCompute湖仓一体介绍

简介:本篇内容分享了MaxCompute湖仓一体介绍。 分享人:孟硕 阿里云 MaxCompute产品专家 视频链接:数据智能实战营-北京站 专题回顾 正文: 本篇内容将通过两个部分来介绍MaxCompute湖仓一体。 一、什么是 MaxCompute 湖仓一体…

云原生离线实时一体化数仓建设与实践

简介:本篇内容分享了云原生离线实时一体化数仓建设与实践。 分享人:刘一鸣 Hologres 产品经理 视频链接:数据智能实战营-北京站 专题回顾 正文: 本篇内容将通过五个部分来介绍云原生离线实时一体化数仓建设与实践。 一、离线实…

议题征集|Flink Forward Asia 2022 正式启动

在这数据量爆炸性增长的时代,开源软件如雨后春笋般出现在开发者的视野中,数据的价值被重新定义。同时,越来越多的企业开启实时化道路,数据的实时分析与计算需求与日俱增。作为主打流处理的计算引擎 Apache Flink 于 2014 年正式开…

龙蜥正式开源 SysOM:百万级实战经验打造,一站式运维管理平台 | 龙蜥技术

简介:SysOM集监控、告警、诊断、修复、安全能力于一体的操作系统运维平台。 文/系统运维 SIG 如果你被突如其来的 OOPS 和满屏奇怪的函数弄得满头问号?机器内存明明很大,却申请不出来内存?业务周期抖动,ping 命令偶尔…

微软在华商业应用战略全面升级,首次推出面向医疗和生命科学的云行业套件

2022年9月29日,微软宣布进一步升级在华商业应用战略,落地一系列智能商业应用(Biz App)功能的同时,以Dynamics 365和Power Platform为基础,进一步完善商业应用战略与价值定位,助力更多客户和合作…

使用Databricks进行零售业需求预测的应用实践

简介:本文从零售业需求预测痛点、商店商品模型预测的实践演示,介绍Databricks如何助力零售商进行需求、库存预测,实现成本把控和营收增长。 作者:李锦桂 阿里云开源大数据平台开发工程师 本文从零售业需求预测痛点、商店商品模型…

龙蜥开源内核追踪利器 Surftrace:协议包解析效率提升 10 倍 | 龙蜥技术

简介:如何将网络报文与内核协议栈清晰关联起来精准追踪到关注的报文行进路径呢? 文/系统运维 SIG Surftrace 是由系统运维 SIG 推出的一个 ftrace 封装器和开发编译平台,让用户既能基于 libbpf 快速构建工程进行开发,也能作为 ft…

开源要正式写进法律了?

作者 | 何苗 出品 | CSDN(ID:CSDNnews)去年,当大家还在为开源的快速发展而欢呼之际,影响了全球数百万台计算机Log4j 漏洞事件给开源软件开发者与使用者敲响了一记警钟。因而今年,开源软件及其供应链安全…

阿里云软著申请|这项保护,让我得到了10万赔偿

简介:对于企业来说,申请软件著作权是证明自己和保护自己的强力护盾。除此之外,它还有着很多不可忽视的意义与价值。阿里云软著申请,一站式智能服务,助力企业和开发者高效发展,省时省力更省心。 前几日&…

宜搭小技巧|海量数据管理难?这招帮你事半功倍

简介:一键生成数据管理页,海量数据随心管理! 话接上回,宜小搭组织大家团建,当收集完大家的报名信息后,有小伙伴想要修改已提交的信息,面对海量的数据,整理查找太费时间。 如何快速…

1024 程序员节官方剧透:重磅大咖再聚,共话中国技术新生态

在二进制垒起的计算机世界里,1024 对于程序员而言,早已不再是单纯的一串数字,不断演进的开发时代赋予了它特殊的意义。 伴随着一份份热衷与期盼,10 月 22-24 日,由湖南湘江新区管委会主办,长沙工业与信息化…