消息队列 RabbitMQ 遇上可观测 - 业务链路可视化

本篇文章主要介绍阿里云消息队列 RabbitMQ 版的可观测功能。RabbitMQ 的可观测能力相对开源有了全面的加强,为业务链路保驾护航。

消息队列 RabbitMQ 简介

阿里云消息队列 RabbitMQ 版是一款基于高可用分布式存储架构实现的 AMQP 0-9-1 协议的消息产品,兼容开源 RabbitMQ 客户端,解决开源各种稳定性痛点(例如消息堆积、脑裂等问题),同时具备高并发、分布式、灵活扩缩容等云消息服务优势。

阿里云消息队列 RabbitMQ 的可观测能力相对开源有了全面的加强,那么什么场景下可以用到可观测能力呢?

为什么需要强大的可观测能力

随着分布式和云原生架构的兴起,系统的可观测性在问题排查、系统运维,甚至业务运营方面起到越来越重要的作用。

场景一:线上消息消费有异常,消息不能及时被处理,需要及时收到报警,并快速定位问题;

场景二:线上某些订单状态有异常,需要排查对应的消息链路环节是否正常发送消息

场景三:需要分析消息流量变化趋势、流量分布特点或消息体量,进而进行业务趋势分析规划;

场景四:需要查看和分析应用上下游依赖拓扑情况,进行架构升级优化或改造。

消息队列 RabbitMQ 可观测能力

结合上文的内容,下面具体对阿里云消息队列 RabbitMQ 的可观测性的两个核心功能进行介绍。

核心优势

  • 可观测 Dashboard 大盘

1、优化性能,具备超强稳定性;

2、一键开箱,降低搭建成本;

3、呈现清晰,问题资源一眼可见。

  • 可观测消息轨迹

1、可实现多种问题场景的筛查和搜索能力;

2、支持图形化展示复杂的轨迹信息,使用更加便捷。

可观测 Dashboard 大盘

  • 应用场景

使用 Prometheus 监控服务和 Grafana 的指标存储和展示能力,消息队列 RabbitMQ 版为企业版和铂金版实例提供 Dashboard 大盘功能。通过该功能,您可以查看实例、Vhost、Queue 和 Exchange 的各种指标数据,帮助您及时发现和定位问题。

  • 功能特点

1、多维度组合查询能力:可以从集群、Vhost、Exchange、Queue 多维度聚合查询数据;

2、排序能力:同一指标下,资源按照健康状况倒序排序,一眼看到集群中最有问题的资源;

3、丰富的指标数据:消息量、连接数、堆积量、关键接口请求数据等。

可观测消息轨迹

  • 应用场景

如果消息收发不符合预期,您可以通过查询消息轨迹,快速分析历史消息收发详情和定位问题原因,及时恢复业务。

  • 功能介绍

1、查询能力

  • 按 Queue 查询:查询一定时间范围内,Queue 上的所有消息的轨迹。适用于只知道消息发送到的 Queue,不知道发送消息时设置的 Message ID 的模糊查询场景。
  • 按 Message ID 查询:根据 Message ID 的精确查询指定消息。Message ID 设置为和业务相关的唯一 ID。
  • 按消息处理耗时:根据消息处理耗时(消息投递给消费者开始时间到消费者处理完成返回应答的时间)大于指定时间来查询消息轨迹。

2、轨迹内容

  • 查看生命周期的各阶段时间:消息到达时间、投递时间、应答时间、进死信时间等;
  • 查看消息流转链路信息:消息从生产者到 Exchange 到 Queue 到消费者的链路拓扑信息;
  • 查看生产者、消费者信息:IP 地址、账号 ID;
  • 查看失败原因:发送失败、消费失败原因、进死信原因等。

作者:文婷、不周

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510645.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你的 Sleep 服务会梦到服务网格外的 bookinfo 吗

作为业内首个全托管 Istio 兼容的阿里云服务网格产品 ASM,一开始从架构上就保持了与社区、业界趋势的一致性,控制平面的组件托管在阿里云侧,与数据面侧的用户集群独立。ASM 产品是基于社区 Istio 定制实现的,在托管的控制面侧提供…

巨人之舞 | Forrester Wave四季度榜单新鲜出炉,云厂商鏖战犹酣

日前,国际权威咨询机构 Forrester 发布《The Forrester Wave:2022 Q4中国公有云开发及基础设施平台(以下简称“PCDIP”)》报告。其中透露出哪些最新行业信息?有何指导意义?企业用户如何借助这份报告&#x…

EventBridge 在 SaaS 企业集成领域的探索与实践

当下降本增效是各行各业的主题,而 SaaS 应用作为更快触达和服务业务场景的方式则被更多企业熟知和采用。随着国内 SaaS 商业环境的逐渐成熟,传统企业中各个部门的工程师和管理者,能迅速决定采购提升效率的 SaaS 产品,然后快速投入…

解密函数计算异步任务能力之「任务的状态及生命周期管理」

前言 任务系统中有一类很重要的概念,即任务的状态和生命管理周期。其本质是对任务的生命周期管理。细分的状态有助于在使用时能够更清楚的了解系统发生了什么内容,便于针对性的根据业务情况进行操作。函数计算 Serverless Task 提供了多种可查询的状态&…

将 Terraform 生态粘合到 Kubernetes 世界

背景 随着各大云厂商产品版图的扩大,基础计算设施,中间件服务,大数据/AI 服务,应用运维管理服务等都可以直接被企业和开发者拿来即用。我们注意到也有不少企业基于不同云厂商的服务作为基础来建设自己的企业基础设施中台。为了更…

照妖镜:一个工具的自我超越

人和动物的最大区别,就是人会使用工具。那么,作为一个工具,如何在用户需求多变、产品功能多样的当下,不断地实现自我超越呢?今天我们就来聊一聊。 一、高开低走 听说天庭第一发明家太上老君,又引入了一条…

云原生混部最后一道防线:节点水位线设计

引言 在阿里集团,在离线混部技术从 2014 年开始,经历了七年的双十一检验,内部已经大规模落地推广,每年为阿里集团节省数十亿的资源成本,整体资源利用率达到 70% 左右,达到业界领先。这两年,我们…

为什么 ChatGPT 会引起 Google 的恐慌?

在 ChatGPT 尚未全面开放使用之际,它散发的巨大威力,似乎已经让行业内的竞争对手感到了威胁。整理 | 屠敏出品 | CSDN(ID:CSDNnews)距离 ChatGPT 上线不足一个月的时间,其已经成为各行各业智囊团中的“网红…

阿里云中间件开源往事

分布式架构和云原生重塑了中间件的游戏规则,这给国内开发者提供了重新定义中间件的历史机遇。 在分布式架构流行前,国外 IT 厂商引领着中间件市场的发展,且以闭源、重商业的服务形式为主;随着云计算和互联网的普及,阿…

一个开发者自述:我是如何设计针对冷热读写场景的 RocketMQ 存储系统

悸动 32 岁,码农的倒数第二个本命年,平淡无奇的生活总觉得缺少了点什么。 想要去创业,却害怕家庭承受不住再次失败的挫折,想要生二胎,带娃的压力让我想着还不如去创业;所以我只好在生活中寻找一些小感动&…

Serverless实战 - 2分钟,教你用Serverless每天给女朋友自动发土味情话

一、Serverless简介 Serverless,中文意思是“无服务器”,所谓的无服务器并非是说不需要依靠服务器等资源,而是说开发者再也不用过多考虑服务器的问题,可以更专注在产品代码上,同时计算资源也开始作为服务出现&#xf…

如何实现一个 Paxos

Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽象性,很少有人基于朴素 Paxos 开发一致性库,而 RAFT 则是工业界里实现较多的一致性算法,RAFT 的论文可以在下面参考资料中…

比 Bloom Filter 节省25%空间!Ribbon Filter 在 Lindorm 中的应用

1 前言 Lindorm是一个低成本高吞吐的多模数据库,目前,Lindorm是阿里内部数据体量最大,覆盖业务最广的数据库产品。超高的性能和低RT一直是Lindorm追求的目标,因此Lindorm也在不断地优化和迭代,争取在每个小点上都做到…

阿里云云原生一体化数仓 — 数据治理新能力解读

一、数据治理中心产品简介 阿里云DataWorks:一站式大数据开发与治理平台 架构大图 阿里云 DataWorks定位于一站式的大数据开发和治理平台,从下图可以看出,DataWorks 与 MaxCompute、Hologres 等大数据引擎紧密配合,在数据的 采、…

入门即享受!coolbpf 硬核提升 BPF 开发效率

编者按:BPF 技术还在如火如荼的发展着,本文先通过对 BPF 知识的介绍,带领大家入门 BPF,然后介绍 coolbpf 的远程编译(原名 LCC,LibbpfCompilerCollection),意为酷玩 BPF,…

拥抱开放,Serverless 时代的下一征程

Serverless 作为云计算的最佳实践和未来演进趋势,其全托管免运维的使用体验和按量付费的成本优势使得它在云原生时代备受推崇。Serverless 的使用场景也由事件驱动,数据处理等部分特定场景转向更为广泛通用化的 WEB,微服务,AI&…

云原生混部系统 Koordinator 架构详解

混部技术的介绍和发展 混部的概念可以从两个角度来理解,从节点维度来看,混部就是将多个容器部署在同一个节点上,这些容器内的应用既包括在线类型,也包括离线类型;从集群维度来看,混部是将多种应用在一个集…

全链路灰度在数据库上我们是怎么做的?

什么是全链路灰度? 微服务体系架构中,服务之间的依赖关系错综复杂,有时某个功能发版依赖多个服务同时升级上线。我们希望可以对这些服务的新版本同时进行小流量灰度验证,这就是微服务架构中特有的全链路灰度场景,通过…

InnoDB 之 UNDO LOG 介绍

undo log的组织形式 此部分是关于Undo log的组织形式的一个介绍;主要分为两部分来对undo log的组织形式进行介绍:文件结构和内存结构。在介绍这两部分时,先从局部出发,最后再给出各个部分的联系。 1. 文件结构 首先&#xff0c…

Spark 如何对源端数据做切分?

引言 典型的Spark作业读取位于OSS的Parquet外表时,源端的并发度(task/partition)如何确定?特别是在做TPCH测试时有一些疑问,如源端扫描文件的并发度是如何确定的?是否一个parquet文件对应一个partition&am…