- 朴素贝叶斯分类器是假设数据样本特征完全独立,以贝叶斯定理为基础的简单概率分类器。
- AdaBoost算法的自适应在于前一个分类器产生的错误分类样本会被用来训练下一个分类器,从而提升分类准确率,但是AdaBoost算法对于噪声样本和异常样本比较敏感。
- 支持向量机是用过构建一个或者多个高维的超平面来将样本数据进行划分,超平面即为样本之间的分类边界。
- 基于k近邻的K个样本作为分析从而简化计算提升效率,K近邻算法的分类器是一种基于距离计算的分类器。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/509000.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!