CNN(Convolutional Neural Network) 的基础

卷积神经网络(Convolutional Neural Network,简称CNN),是一种前馈神经网络,人工神经元可以响应周围单元,可以进行大型图像处理。卷积神经网络包括卷积层和池化层。 卷积神经网络是受到生物思考方式启发的MLPs(多层感知器),它有着不同的类别层次,并且各层的工作方式和作用也不同。

CNN网络结构

CNN网络结构

如图所示,CNN网络工作时,会伴随着卷积并且不断转换着这些卷积。

学习完CNN后,明白了以下问题:

1.  为什么卷积神经网络更适合于图像分类?相比于传统的神经网络优势在哪里?

前面说到在图像领域,用传统的神经网络并不合适。我们知道,图像是由一个个像素点构成,每个像素点有三个通道,分别代表RGB颜色,那么,如果一个图像的尺寸是(28,28,1),即代表这个图像的是一个长宽均为28,channel为1的图像(channel也叫depth,此处1代表灰色图像)。如果使用全连接的网络结构,即,网络中的神经与与相邻层上的每个神经元均连接,那就意味着我们的网络有28 * 28 =784个神经元,hidden层采用了15个神经元,那么简单计算一下,我们需要的参数个数(w和b)就有:784*15*10+15+10=117625个,这个参数太多了,随便进行一次反向传播计算量都是巨大的,从计算资源和调参的角度都不建议用传统的神经网络。

2. 卷积层中的卷积过程是如何计算的?为什么卷积核是有效的?

可以看到这就是最简单的内积公式。feature_map1(1,1)表示在通过第一个卷积核计算完后得到的feature_map的第一行第一列的值,随着卷积核的窗口不断的滑动,我们可以计算出一个3*3的feature_map1;同理可以计算通过第二个卷积核进行卷积运算后的feature_map2,那么这一层卷积操作就完成了。feature_map尺寸计算公式:[ (原图片尺寸 -卷积核尺寸)/ 步长 ] + 1。

那么问题来了,虽然我们知道了卷积核是如何计算的,但是为什么使用卷积核计算后分类效果要由于普通的神经网络呢?我们仔细来看一下上面计算的结果。通过第一个卷积核计算后的feature_map是一个三维数据,在第三列的绝对值最大,说明原始图片上对应的地方有一条垂直方向的特征,即像素数值变化较大;而通过第二个卷积核计算后,第三列的数值为0,第二行的数值绝对值最大,说明原始图片上对应的地方有一条水平方向的特征。

  仔细思考一下,这个时候,我们设计的两个卷积核分别能够提取,或者说检测出原始图片的特定的特征。此时我们其实就可以把卷积核就理解为特征提取器啊!现在就明白了,为什么我们只需要把图片数据灌进去,设计好卷积核的尺寸、数量和滑动的步长就可以让自动提取出图片的某些特征,从而达到分类的效果啊!

  :1.此处的卷积运算是两个卷积核大小的矩阵的内积运算,不是矩阵乘法。即相同位置的数字相乘再相加求和。不要弄混淆了。

    2.卷积核的公式有很多,这只是最简单的一种。我们所说的卷积核在数字信号处理里也叫滤波器,那滤波器的种类就多了,均值滤波器,高斯滤波器,拉普拉斯滤波器等等,不过,不管是什么滤波器,都只是一种数学运算,无非就是计算更复杂一点。

             每一层的卷积核大小和个数可以自己定义,不过一般情况下,根据实验得到的经验来看,会在越靠近输入层的卷积层设定少量的卷积核,越往后,卷积层设定的卷积核数目就越多。具体原因大家可以先思考一下,小结里会解释原因。

3.  尺寸必须为正方形吗?如果是长方形因该怎么做?

卷积核的尺寸不一定非得为正方形。长方形也可以,只不过通常情况下为正方形。如果要设置为长方形,那么首先得保证这层的输出形状是整数,不能是小数。如果你的图像是边长为 28 的正方形。那么卷积层的输出就满足 [ (28 - kernel_size)/ stride ] + 1 ,这个数值得是整数才行,否则没有物理意义。譬如,你算得一个边长为 3.6 的 feature map 是没有物理意义的。 pooling 层同理。FC 层的输出形状总是满足整数,其唯一的要求就是整个训练过程中 FC 层的输入得是定长的。如果你的图像不是正方形。那么在制作数据时,可以缩放到统一大小(非正方形),再使用非正方形的 kernel_size 来使得卷积层的输出依然是整数。总之,撇开网络结果设定的好坏不谈,其本质上就是在做算术应用题:如何使得各层的输出是整数。

4. 步长的大小会对模型的效果产生什么样的影响?垂直方向和水平方向的步长是否得设定为相同的?

实验结果如下:

第一次改进:仅改变第一层与第二层的卷积核数目的大小,其他保持不变。可以看到结果提升了0.06%

第二次改进:保持3*3的卷积核大小,仅改变第二层的卷积核数目,其他保持不变,可以看到结果相较于原始参数提升了0.08%

  由以上结果可以看出,改变卷积核的大小与卷积核的数目会对结果产生一定影响,在目前手写数字识别的项目中,缩小卷积核尺寸,增加卷积核数目都会提高准确率。

有stride_w和stride_h,后者表示的就是上下步长。如果用stride,则表示stride_h=stride_w=stride。

5. 为什么要采用池化层,Max Pooling有什么好处?

从计算方式来看,算是最简单的一种了,取max即可,但是这也引发一个思考,为什么需要Max Pooling,意义在哪里?如果我们只取最大值,那其他的值被舍弃难道就没有影响吗?不会损失这部分信息吗?如果认为这些信息是可损失的,那么是否意味着我们在进行卷积操作后仍然产生了一些不必要的冗余信息呢?

  其实从上文分析卷积核为什么有效的原因来看,每一个卷积核可以看做一个特征提取器,不同的卷积核负责提取不同的特征,我们例子中设计的第一个卷积核能够提取出“垂直”方向的特征,第二个卷积核能够提取出“水平”方向的特征,那么我们对其进行Max Pooling操作后,提取出的是真正能够识别特征的数值,其余被舍弃的数值,对于我提取特定的特征并没有特别大的帮助。那么在进行后续计算使,减小了feature map的尺寸,从而减少参数,达到减小计算量,缺不损失效果的情况。

  不过并不是所有情况Max Pooling的效果都很好,有时候有些周边信息也会对某个特定特征的识别产生一定效果,那么这个时候舍弃这部分“不重要”的信息,就不划算了。所以具体情况得具体分析,如果加了Max Pooling后效果反而变差了,不如把卷积后不加Max Pooling的结果与卷积后加了Max Pooling的结果输出对比一下,看看Max Pooling是否对卷积核提取特征起了反效果。

6. Zero Padding有什么作用?如果已知一个feature map的尺寸,如何确定zero padding的数目?

   所以到现在为止,我们的图片由4*4,通过卷积层变为3*3,再通过池化层变化2*2,如果我们再添加层,那么图片岂不是会越变越小?这个时候我们就会引出“Zero Padding”(补零),它可以帮助我们保证每次经过卷积或池化输出后图片的大小不变,如,上述例子我们如果加入Zero Padding,再采用3*3的卷积核,那么变换后的图片尺寸与原图片尺寸相同,如下图所示:

  图4 zero padding结果

   通常情况下,我们希望图片做完卷积操作后保持图片大小不变,所以我们一般会选择尺寸为3*3的卷积核和1的zero padding,或者5*5的卷积核与2的zero padding,这样通过计算后,可以保留图片的原始尺寸。那么加入zero padding后的feature_map尺寸 =( width + 2 * padding_size - filter_size )/stride + 1

  注:这里的width也可换成height,此处是默认正方形的卷积核,weight = height,如果两者不相等,可以分开计算,分别补零。

7.  tensorflow  cnn模型中中padding中 same 和 VALID的区别

Noutput=Ninput/s

Noutput=(Ninput-f+1)/s

same模式下特征相乘,如果数量缺失,在原特征中补0操作。

而在VaLID中直接缺失。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508935.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

语音识别学习日志 2019-7-14 语音识别基础知识准备2 {EM算法与混合高斯模型(Gaussian mixture model, GMM)}

https://blog.csdn.net/lin_limin/article/details/81048411会对GMM和EM做详细介绍 本文参考: http://www.ituring.com.cn/article/497545(GMM模型) https://blog.csdn.net/xmu_jupiter/article/details/50889023(GMM模型) http://www.cnblogs.com/wjy-lulu/p/7…

【爬虫】爬取带有cookie才能获取网页内容的新闻网站

工作任务: 今天老大让我跑取一个新闻网站:https://www.yidaiyilu.gov.cn/ 采坑记录: https协议,如果利用http协议去请求会报出如下信息: 错误:SSLHandshake错误就知道了,客户端与服务端进行连…

语音识别学习日志 2019-7-14 语音识别基础知识准备3 {Kmean算法分析与HMM(Hidden Markov Model)模型}

Kmean算法 聚类算法 对于"监督学习"(supervised learning),其训练样本是带有标记信息的,并且监督学习的目的是:对带有标记的数据集进行模型学习,从而便于对新的样本进行分类。而在“无监督学习”(unsupervised learni…

语音识别学习日志 2019-7-15 语音识别基础知识准备4 {Baun-Welch算法}

HMM 前向算法(Forward Algorithm)详细解释参考: http://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-1 http://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-2 http://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-3…

【转载保存】B+树索引原理以及应用案例

地址:https://www.jianshu.com/p/486a514b0ded 利用c/c实现基于b树小型关系型数据库:https://github.com/enpeizhao/duck_db 利用java实现的基于b树的数据库案例:https://github.com/liumengjun/BPlusTreeIndex 1.什么是索引? …

语音识别学习日志 2019-7-16 语音识别基础知识准备5 {决策树算法(ID3、 C4.5、 CART)}

决策树算法(ID3、 C4.5、 CART) 决策树的定义 决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0。其具有可读性、分类速度快的优点,是一种有监督学习。 决策树呈…

语音识别学习日志 2019-7-17 语音识别基础知识准备6 {维特比算法(Viterbi Algorithm)}

HMM 维特比算法(Viterbi Algorithm)详细解释参考:http://www.52nlp.cn/hmm-learn-best-practices-six-viterbi-algorithm-1 http://www.52nlp.cn/hmm-learn-best-practices-six-viterbi-algorithm-2 http://www.52nlp.cn/hmm-learn-best-practices-six-viterbi-algorithm-3 …

基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 包围盒构建 4.2 点云压缩 4.3 曲面重建 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...........................................…

【转载保存】修改IK分词器源码实现动态加载词典

链接:http://www.gongstring.com/portal/article/index/id/59.html 当前IKAnalyzer从发布最后一个版本后就一直没有再更新,使用过程中,经常遇到需要扩展词库以及动态更新字典表的问题,此处给出一种解决办法(注意&…

【转载保存】索引文件锁LockFactory

索引文件锁LockFactory LockFactory在Lucene中用来对索引文件所在的目录进行加锁,使得同一时间总是只有一个IndexWriter对象可以更改索引文件,即保证单进程内(single in-process)多个不同IndexWriter对象互斥更改(多线程持有相同引用的IndexW…

IndexOptions类说明

IndexOptions是在lucene-core-x.jar包下面,其作用是在新建索引时候选择索引属性。 IndexOptions是一个枚举类: 枚举变量说明: NONE不被索引DOCS_AND_FREQS文档和词频建立索引DOCS_AND_FREQS仅对文档和词频建立索引DOCS_AND_FREQS_AND_POSIT…

【转载保存】lucene正则查询使用注意

今天要分享的是关于lucene中另外一种丰富的查询方式----正则查询,lucene内置了许多的查询API,以及更强大的自定义查询方式的QueryParse,大部分情况下我们使用内置的查询API,基本上就可以满足我们的需求了,但是如果你想…

【转载保存】搜索引擎调研文档

搜索引擎选型调研文档 Elasticsearch简介* Elasticsearch是一个实时的分布式搜索和分析引擎。它可以帮助你用前所未有的速度去处理大规模数据。 它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合。 Elasticsearch是一个建立在全…

lucene详细说明文档

以下部门功能在lucene5以上版本可能有的API所有改变 目录1.简介 2.了解索引操作 2.1倒排索引 2.2字段类型 2.3细分 2.4文件编号 2.5搜索索引 3.创建索引 4.基本索引操作 4.1核心索引类 4.2将数据添加到索引 5.文件和领域 5.1文件 5.2领域 5.3在Lucene中增强文档 1.简介 该索引是…

分布式集群架构场景解决方案学习笔记

课程学习 一致性哈希算法集群时钟同步问题分布式ID解决方案分布式任务调度问题session共享(一致性)问题 一致性哈希算法 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题&#xff0c…

分布式学习-总结

文章目录分布式理论分布式系统定义以及面临的问题分布式系统定义分布式面临的问题通信异常网络分区三态节点故障分布式理论:一致性概念分布式一致性的提出强一致性弱一致性最终一致性分布式事务CAP定理什么是CAP理论?为什么只能3选2能不能解决3选2的问题…

什么叫死锁?死锁案例?死锁必须满足哪些条件?如何定位死锁问题?有哪些解决死锁策略?哲学家问题?

1.死锁是什么? 死锁一定发生在并发环境中,死锁是一种状态,当两个(或者多个线程)相互持有对方所需要的资源,却又都不主动释放手中持有的资源,导致大家都获取不到自己想要的资源,所有相关的线程无法继续执行…

dubbo启动服务启动报错.UnsatisfiedDependencyException: Error creating bean with name '***': Un

报错信息&#xff1a; 今天部署开发环境的时候这个问题弄了一下午&#xff0c;由于我本地启动是好的&#xff0c;然后部署到服务器老是启动不了&#xff0c;报如上错&#xff0c;后来经过排查发现是provider.xml和consumer.xml中的如下代码version属性版本信息不一致。 <du…

【转载保存】dubbo学习笔记

Dubbo Dubbo简介 首先&#xff0c;我理解的Dubbo&#xff0c;从大的方向来看是单体应用到分布式应用过度期的一个产物&#xff0c;具体来说应该是分布式应用从早期的SOA到微服务过度的一个产物。 在编写分布式场景下高并发、高扩展的系统对技能的要求很高&#xff0c;因为这…

mysql搭建手册

mysql搭建手册 主从搭建 搭建mysql 关闭防火墙&#xff1a;systemctl stop firewalld 如果失败先安装 yum install iptables-services 配置数据库 /etc/my.cnf&#xff0c;配置同步数据库等 主库配置信息 [mysqld] datadir/usr/local/mysql/data log-error/usr/local/mysql/…