【转载保存】搜索引擎调研文档

搜索引擎选型调研文档

Elasticsearch简介*

Elasticsearch是一个实时的分布式搜索和分析引擎。它可以帮助你用前所未有的速度去处理大规模数据。

它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合。

Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架。

但是Lucene只是一个框架,要充分利用它的功能,需要使用Java,并且在程序中集成Lucene。需要很多的学习了解,才能明白它是如何运行的,Lucene确实非常复杂。

Elasticsearch使用Lucene作为内部引擎,但是在使用它做全文搜索时,只需要使用统一开发好的API即可,而不需要了解其背后复杂的Lucene的运行原理。

当然Elasticsearch并不仅仅是Lucene这么简单,它不但包括了全文搜索功能,还可以进行以下工作:

  • 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。

  • 实时分析的分布式搜索引擎。

  • 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。

这么多的功能被集成到一台服务器上,你可以轻松地通过客户端或者任何你喜欢的程序语言与ES的RESTful API进行交流。

Elasticsearch的上手是非常简单的。它附带了很多非常合理的默认值,这让初学者很好地避免一上手就要面对复杂的理论,

它安装好了就可以使用了,用很小的学习成本就可以变得很有生产力。

随着越学越深入,还可以利用Elasticsearch更多高级的功能,整个引擎可以很灵活地进行配置。可以根据自身需求来定制属于自己的Elasticsearch。

使用案例:

  • 维基百科使用Elasticsearch来进行全文搜做并高亮显示关键词,以及提供search-as-you-type、did-you-mean等搜索建议功能。

  • 英国卫报使用Elasticsearch来处理访客日志,以便能将公众对不同文章的反应实时地反馈给各位编辑。

  • StackOverflow将全文搜索与地理位置和相关信息进行结合,以提供more-like-this相关问题的展现。

  • GitHub使用Elasticsearch来检索超过1300亿行代码。

  • 每天,Goldman Sachs使用它来处理5TB数据的索引,还有很多投行使用它来分析股票市场的变动。

但是Elasticsearch并不只是面向大型企业的,它还帮助了很多类似DataDog以及Klout的创业公司进行了功能的扩展。

Elasticsearch的优缺点**:

优点

  1. Elasticsearch是分布式的。不需要其他组件,分发是实时的,被叫做”Push replication”。
  2. Elasticsearch 完全支持 Apache Lucene 的接近实时的搜索。
  3. 处理多租户(multitenancy)不需要特殊配置,而Solr则需要更多的高级设置。
  4. Elasticsearch 采用 Gateway 的概念,使得完备份更加简单。
  5. 各节点组成对等的网络结构,某些节点出现故障时会自动分配其他节点代替其进行工作。

缺点

  1. 只有一名开发者(当前Elasticsearch GitHub组织已经不只如此,已经有了相当活跃的维护者)
  2. 还不够自动(不适合当前新的Index Warmup API)

Solr简介*

Solr(读作“solar”)是Apache Lucene项目的开源企业搜索平台。其主要功能包括全文检索、命中标示、分面搜索、动态聚类、数据库集成,以及富文本(如Word、PDF)的处理。Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。

Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。Solr强大的外部配置功能使得无需进行Java编码,便可对其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制。

因为2010年 Apache Lucene 和 Apache Solr 项目合并,两个项目是由同一个Apache软件基金会开发团队制作实现的。提到技术或产品时,Lucene/Solr或Solr/Lucene是一样的。

Solr的优缺点

优点

  1. Solr有一个更大、更成熟的用户、开发和贡献者社区。
  2. 支持添加多种格式的索引,如:HTML、PDF、微软 Office 系列软件格式以及 JSON、XML、CSV 等纯文本格式。
  3. Solr比较成熟、稳定。
  4. 不考虑建索引的同时进行搜索,速度更快。

缺点

  1. 建立索引时,搜索效率下降,实时索引搜索效率不高。

Elasticsearch与Solr的比较*

当单纯的对已有数据进行搜索时,Solr更快。

Search Fesh Index While Idle

当实时建立索引时, Solr会产生io阻塞,查询性能较差, Elasticsearch具有明显的优势。

search_fresh_index_while_indexing

随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化。

search_fresh_index_while_indexing

综上所述,Solr的架构不适合实时搜索的应用。

实际生产环境测试*

下图为将搜索引擎从Solr转到Elasticsearch以后的平均查询速度有了50倍的提升。

average_execution_time

Elasticsearch 与 Solr 的比较总结

  • 二者安装都很简单;
  • Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;
  • Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式;
  • Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;
  • Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。

Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

其他基于Lucene的开源搜索引擎解决方案*

  1. 直接使用 Lucene

说明:Lucene 是一个 JAVA 搜索类库,它本身并不是一个完整的解决方案,需要额外的开发工作。

优点:成熟的解决方案,有很多的成功案例。apache 顶级项目,正在持续快速的进步。庞大而活跃的开发社区,大量的开发人员。它只是一个类库,有足够的定制和优化空间:经过简单定制,就可以满足绝大部分常见的需求;经过优化,可以支持 10亿+ 量级的搜索。

缺点:需要额外的开发工作。所有的扩展,分布式,可靠性等都需要自己实现;非实时,从建索引到可以搜索中间有一个时间延迟,而当前的“近实时”(Lucene Near Real Time search)搜索方案的可扩展性有待进一步完善

  • Katta

说明:基于 Lucene 的,支持分布式,可扩展,具有容错功能,准实时的搜索方案。

优点:开箱即用,可以与 Hadoop 配合实现分布式。具备扩展和容错机制。

缺点:只是搜索方案,建索引部分还是需要自己实现。在搜索功能上,只实现了最基本的需求。成功案例较少,项目的成熟度稍微差一些。因为需要支持分布式,对于一些复杂的查询需求,定制的难度会比较大。

  • Hadoop contrib/index

说明:Map/Reduce 模式的,分布式建索引方案,可以跟 Katta 配合使用。

优点:分布式建索引,具备可扩展性。

缺点:只是建索引方案,不包括搜索实现。工作在批处理模式,对实时搜索的支持不佳。

  • LinkedIn 的开源方案

说明:基于 Lucene 的一系列解决方案,包括 准实时搜索 zoie ,facet 搜索实现 bobo ,机器学习算法 decomposer ,摘要存储库 krati ,数据库模式包装 sensei 等等

优点:经过验证的解决方案,支持分布式,可扩展,丰富的功能实现

缺点:与 linkedin 公司的联系太紧密,可定制性比较差

  • Lucandra

说明:基于 Lucene,索引存在 cassandra 数据库中

优点:参考 cassandra 的优点

缺点:参考 cassandra 的缺点。另外,这只是一个 demo,没有经过大量验证

  • HBasene

说明:基于 Lucene,索引存在 HBase 数据库中

优点:参考 HBase 的优点

缺点:参考 HBase 的缺点。另外,在实现中,lucene terms 是存成行,但每个 term 对应的 posting lists 是以列的方式存储的。随着单个 term 的 posting lists 的增大,查询时的速度受到的影响会非常大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508887.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

lucene详细说明文档

以下部门功能在lucene5以上版本可能有的API所有改变 目录1.简介 2.了解索引操作 2.1倒排索引 2.2字段类型 2.3细分 2.4文件编号 2.5搜索索引 3.创建索引 4.基本索引操作 4.1核心索引类 4.2将数据添加到索引 5.文件和领域 5.1文件 5.2领域 5.3在Lucene中增强文档 1.简介 该索引是…

分布式集群架构场景解决方案学习笔记

课程学习 一致性哈希算法集群时钟同步问题分布式ID解决方案分布式任务调度问题session共享(一致性)问题 一致性哈希算法 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题&#xff0c…

分布式学习-总结

文章目录分布式理论分布式系统定义以及面临的问题分布式系统定义分布式面临的问题通信异常网络分区三态节点故障分布式理论:一致性概念分布式一致性的提出强一致性弱一致性最终一致性分布式事务CAP定理什么是CAP理论?为什么只能3选2能不能解决3选2的问题…

什么叫死锁?死锁案例?死锁必须满足哪些条件?如何定位死锁问题?有哪些解决死锁策略?哲学家问题?

1.死锁是什么? 死锁一定发生在并发环境中,死锁是一种状态,当两个(或者多个线程)相互持有对方所需要的资源,却又都不主动释放手中持有的资源,导致大家都获取不到自己想要的资源,所有相关的线程无法继续执行…

dubbo启动服务启动报错.UnsatisfiedDependencyException: Error creating bean with name '***': Un

报错信息&#xff1a; 今天部署开发环境的时候这个问题弄了一下午&#xff0c;由于我本地启动是好的&#xff0c;然后部署到服务器老是启动不了&#xff0c;报如上错&#xff0c;后来经过排查发现是provider.xml和consumer.xml中的如下代码version属性版本信息不一致。 <du…

【转载保存】dubbo学习笔记

Dubbo Dubbo简介 首先&#xff0c;我理解的Dubbo&#xff0c;从大的方向来看是单体应用到分布式应用过度期的一个产物&#xff0c;具体来说应该是分布式应用从早期的SOA到微服务过度的一个产物。 在编写分布式场景下高并发、高扩展的系统对技能的要求很高&#xff0c;因为这…

mysql搭建手册

mysql搭建手册 主从搭建 搭建mysql 关闭防火墙&#xff1a;systemctl stop firewalld 如果失败先安装 yum install iptables-services 配置数据库 /etc/my.cnf&#xff0c;配置同步数据库等 主库配置信息 [mysqld] datadir/usr/local/mysql/data log-error/usr/local/mysql/…

MongoDb安装配置

Mongodb学习 Mongodb安装 1.下载社区版 MongoDB 4.1.3 去官网下载对应的MongoDB 然后上传到Linux虚拟机 2.将压缩包解压即可 tar -zxvf MongoDB-linux-x86_64-4.1.3.tgz3.启动 mkdir -p /data/db./bin/mongod4.指定配置文件方式的启动 配置文件样例: dbpath/data/mongo…

FastDFS学习笔记

FastDFS课程内容 第一部分&#xff1a;FastDFS基础回顾 为什么要有分布式文件系统、分布式文件系统对比、FastDFS特性、linux安装、java访问FastDFS 第二部分&#xff1a;FastDFS系统架构和功能原理 架构详解、架构设计的概念、设计理念、功能原理(上传、下载、文件同步、删…

redis主从搭建和分片集群搭建

文章目录redis主从搭建搭建一主一从&#xff1a;下载安装redis&#xff1a;两台机器都需要操作权限认证理解主从复制原理、同步数据集全量同步三个阶段&#xff1a;增量同步&#xff1a;心跳检测redis哨兵模式部署方案搭建配置哨兵模式原理建立连接获取主服务器信息获取从服务器…

如何利用redis实现秒杀系统

文章目录题记利用Watch实现Redis乐观锁题记 在线思维导图总结&#xff1a;redis大纲 利用Watch实现Redis乐观锁 乐观锁基于CAS&#xff08;Compare And Swap&#xff09;思想&#xff08;比较并替换&#xff09;&#xff0c;是不具有互斥性&#xff0c;不会产生锁等待而消 耗…

教你如何使用redis分布式锁

文章目录一、redis客户端实现应用1.利用set nx命令实现分布式锁2.利用分布式锁命令 setnx问题1.为什么不直接调用jedis.del(key)方法而采用redislua实现&#xff1f;2.上述两种方式存在的问题&#xff1f;3.根本原因分析二、分布式场景Redission分布式锁的使用1.分布式锁的特性…

本地缓存之Guava简单使用

文章目录使用场景Guava Cache 的优势Guava Cache使用CacheLoaderCallable删除主动删除过期删除基于容量删除引用删除高级用法并发设置更新锁定GuavaCache高级实战之疑难问题GuavaCache会oom&#xff08;内存溢出&#xff09;吗GuavaCache缓存到期就会立即清除吗GuavaCache如何找…

java中强引用、弱引用、软引用、虚引用学习

文章目录强引用弱引用软引用虚引用将引用之前首先让我们一起回顾一下java对象的生命周期强引用 在实际开发场景中&#xff0c;我们一般使用的都是强引用&#xff0c;只要强引用存在&#xff0c;垃圾回收即使OOM也不会回收&#xff0c;知道强引用释放以后&#xff0c;对象才会被…

mysql left join、right join、inner join、union、union all使用以及图解

左外连接&#xff1a;left join sql语法&#xff1a;LEFT JOIN LEFT OUTER JOIN 首先需要创建两张表做测试&#xff0c;表数据如下所示 table 1 表&#xff1a; table2 表&#xff1a; 查询sql&#xff1a; select * from table1 a LEFT JOIN table2 b on a.idb.id 总结&a…

第十八章 Swing程序设计

Swing用于开发桌面窗体程序&#xff0c;是JDK的第二代GUI框架&#xff0c;其功能比JDK第一代GUI框架AWT更为强大、性能更加优良。但因为Swing技术推出时间太早&#xff0c;其性能、开发效率等不及一些其他流行技术&#xff0c;所以目前市场上大多数桌面窗体程序都不是由Java开发…

redis stream学习总结

文章目录streamStream基本概念消息id消息内容增删查改消息生产添加消息 xadd查看消息长度 xlen限制stream最大长度1.xadd 中添加**maxlen**:2.xtrim查询消息 xrange正向排序&#xff1a;消费id从小到大排反向查询&#xff1a;消费id从大到小排删除消息消息消费独立消费 xread消…

常用的限流算法学习

常用的限流算法有漏桶算法和令牌桶算法&#xff0c;guava的RateLimiter使用的是令牌桶算法&#xff0c;也就是以固定的频率向桶中放入令牌&#xff0c;例如一秒钟10枚令牌&#xff0c;实际业务在每次响应请求之前都从桶中获取令牌&#xff0c;只有取到令牌的请求才会被成功响应…

基于rocketMq秒杀系统demo

基于RocketMQ设计秒杀。 要求&#xff1a; 1. 秒杀商品LagouPhone&#xff0c;数量100个。 2. 秒杀商品不能超卖。 3. 抢购链接隐藏 4. NginxRedisRocketMQTomcatMySQL 实现 接口说明&#xff1a;https://www.liuchengtu.com/swdt/#R9f978d0d00ef9be99f0…

基于Curator实现dubbo服务自动注册发现

文章目录概念基于ServiceDiscovery实现服务自动注册和发现Service:服务基本信息InstanceDetails:封装实例用过来保存到zk中ServiceProvider&#xff1a;服务提供者ServiceConsumer&#xff1a;服务消费者运行基于ServiceDiscovery、ServiceCache实现服务自动注册和发现Registry…