随机森林降维matlab代码,随机森林代码实现问题

% mtry  = number of predictors sampled for spliting at each node.

% votes (classification only) a matrix with one row for each input data point and one

%       column for each class, giving the fraction or number of ?votes? from the random

%       forest.

% oob_times number of times cases are 'out-of-bag' (and thus used in computing OOB error

%       estimate)

% proximity if proximity=TRUE when randomForest is called, a matrix of proximity

%       measures among the input (based on the frequency that pairs of data points are

%       in the same terminal nodes).

% errtr = first column is OOB Err rate, second is for class 1 and so on

function model =classRF_train(X,Y,ntree,mtry, extra_options)

DEFAULTS_ON =0;

%DEBUG_ON=0;

TRUE=1;

FALSE=0;

orig_labels = sort(unique(Y));

Y_new = Y;

new_labels = 1:length(orig_labels);

for i=1:length(orig_labels)

Y_new(find(Y==orig_labels(i)))=Inf;

Y_new(isinf(Y_new))=new_labels(i);

end

Y = Y_new;

if exist('extra_options','var')

if isfield(extra_options,'DEBUG_ON');  DEBUG_ON = extra_options.DEBUG_ON;    end

if isfield(extra_options,'replace');  replace = extra_options.replace;       end

if isfield(extra_options,'classwt');  classwt = extra_options.classwt;       end

if isfield(extra_options,'cutoff');  cutoff = extra_options.cutoff;       end

if isfield(extra_options,'strata');  strata = extra_options.strata;       end

if isfield(extra_options,'sampsize');  sampsize = extra_options.sampsize;       end

if isfield(extra_options,'nodesize');  nodesize = extra_options.nodesize;       end

if isfield(extra_options,'importance');  importance = extra_options.importance;       end

if isfield(extra_options,'localImp');  localImp = extra_options.localImp;       end

if isfield(extra_options,'nPerm');  nPerm = extra_options.nPerm;       end

if isfield(extra_options,'proximity');  proximity = extra_options.proximity;       end

if isfield(extra_options,'oob_prox');  oob_prox = extra_options.oob_prox;       end

%if isfield(extra_options,'norm_votes');  norm_votes = extra_options.norm_votes;       end

if isfield(extra_options,'do_trace');  do_trace = extra_options.do_trace;       end

%if isfield(extra_options,'corr_bias');  corr_bias = extra_options.corr_bias;       end

if isfield(extra_options,'keep_inbag');  keep_inbag = extra_options.keep_inbag;       end

end

keep_forest=1; %always save the trees :)

%set defaults if not already set

if ~exist('DEBUG_ON','var')     DEBUG_ON=FALSE; end

if ~exist('replace','var');     replace = TRUE; end

%if ~exist('classwt','var');     classwt = []; end %will handle these three later

%if ~exist('cutoff','var');      cutoff = 1; end

%if ~exist('strata','var');      strata = 1; end

if ~exist('sampsize','var');

if (replace)

sampsize = size(X,1);

else

sampsize = ceil(0.632*size(X,1));

end;

end

if ~exist('nodesize','var');    nodesize = 1; end %classification=1, regression=5

if ~exist('importance','var');  importance = FALSE; end

if ~exist('localImp','var');    localImp = FALSE; end

if ~exist('nPerm','var');       nPerm = 1; end

%if ~exist('proximity','var');   proximity = 1; end  %will handle these two later

%if ~exist('oob_prox','var');    oob_prox = 1; end

%if ~exist('norm_votes','var');    norm_votes = TRUE; end

if ~exist('do_trace','var');    do_trace = FALSE; end

%if ~exist('corr_bias','var');   corr_bias = FALSE; end

if ~exist('keep_inbag','var');  keep_inbag = FALSE; end

if ~exist('ntree','var') | ntree<=0

ntree=500;

DEFAULTS_ON=1;

end

if ~exist('mtry','var') | mtry<=0 | mtry>size(X,2)

mtry =floor(sqrt(size(X,2)));

end

addclass =isempty(Y);

if (~addclass && length(unique(Y))<2)

error('need atleast two classes for classification');

end

[N D] = size(X);

if N==0; error(' data (X) has 0 rows');end

if (mtry <1 || mtry > D)

DEFAULTS_ON=1;

end

mtry = max(1,min(D,round(mtry)));

if DEFAULTS_ON

fprintf('\tSetting to defaults %d trees and mtry=%d\n',ntree,mtry);

end

if ~isempty(Y)

if length(Y)~=N,

error('Y size is not the same as X size');

end

addclass = FALSE;

else

if ~addclass,

addclass=TRUE;

end

error('have to fill stuff here')

end

if ~isempty(find(isnan(X)));  error('NaNs in X');   end

if ~isempty(find(isnan(Y)));  error('NaNs in Y');   end

%now handle categories. Problem is that categories in R are more

%enhanced. In this i ask the user to specify the column/features to

%consider as categories, 1 if all the values are real values else

%specify the number of categories here

if exist ('extra_options','var') && isfield(extra_options,'categories')

ncat = extra_options.categories;

else

ncat = ones(1,D);

end

maxcat = max(ncat);

if maxcat>32

error('Can not handle categorical predictors with more than 32 categories');

end

%classRF - line 88 in randomForest.default.R

nclass = length(unique(Y));

if ~exist('cutoff','var')

cutoff = ones(1,nclass)* (1/nclass);

else

if sum(cutoff)>1 || sum(cutoff)<0 || length(find(cutoff<=0))>0 || length(cutoff)~=nclass

error('Incorrect cutoff specified');

end

end

if ~exist('classwt','var')

classwt = ones(1,nclass);

ipi=0;

else

if length(classwt)~=nclass

error('Length of classwt not equal to the number of classes')

end

if ~isempty(find(classwt<=0))

error('classwt must be positive');

end

ipi=1;

end

if ~exist('proximity','var')

proximity = addclass;

oob_prox = proximity;

end

if ~exist('oob_prox','var')

oob_prox = proximity;

end

%i handle the below in the mex file

%     if proximity

%         prox = zeros(N,N);

%         proxts = 1;

%     else

%         prox = 1;

%         proxts = 1;

%     end

%i handle the below in the mex file

if localImp

importance = TRUE;

%        impmat = zeors(D,N);

else

%        impmat = 1;

end

if importance

if (nPerm<1)

nPerm = int32(1);

else

nPerm = int32(nPerm);

end

%classRF

%        impout = zeros(D,nclass+2);

%        impSD  = zeros(D,nclass+1);

else

%        impout = zeros(D,1);

%        impSD =  1;

end

%i handle the below in the mex file

%somewhere near line 157 in randomForest.default.R

if addclass

%        nsample = 2*n;

else

%        nsample = n;

end

Stratify = (length(sampsize)>1);

if (~Stratify && sampsize>N)

error('Sampsize too large')

end

if Stratify

if ~exist('strata','var')

strata = Y;

end

nsum = sum(sampsize);

if ( ~isempty(find(sampsize<=0)) || nsum==0)

error('Bad sampsize specification');

end

else

nsum = sampsize;

end

%i handle the below in the mex file

%nrnodes = 2*floor(nsum/nodesize)+1;

%xtest = 1;

%ytest = 1;

%ntest = 1;

%labelts = FALSE;

%nt = ntree;

%[ldau,rdau,nodestatus,nrnodes,upper,avnode,mbest,ndtree]=

%keyboard

if Stratify

strata = int32(strata);

else

strata = int32(1);

end

Options = int32([addclass, importance, localImp, proximity, oob_prox, do_trace, keep_forest, replace, Stratify, keep_inbag]);

if DEBUG_ON

%print the parameters that i am sending in

fprintf('size(x) %d\n',size(X));

fprintf('size(y) %d\n',size(Y));

fprintf('nclass %d\n',nclass);

fprintf('size(ncat) %d\n',size(ncat));

fprintf('maxcat %d\n',maxcat);

fprintf('size(sampsize) %d\n',size(sampsize));

fprintf('sampsize[0] %d\n',sampsize(1));

fprintf('Stratify %d\n',Stratify);

fprintf('Proximity %d\n',proximity);

fprintf('oob_prox %d\n',oob_prox);

fprintf('strata %d\n',strata);

fprintf('ntree %d\n',ntree);

fprintf('mtry %d\n',mtry);

fprintf('ipi %d\n',ipi);

fprintf('classwt %f\n',classwt);

fprintf('cutoff %f\n',cutoff);

fprintf('nodesize %f\n',nodesize);

end

[nrnodes,ntree,xbestsplit,classwt,cutoff,treemap,nodestatus,nodeclass,bestvar,ndbigtree,mtry ...

outcl, counttr, prox, impmat, impout, impSD, errtr, inbag] ...

= mexClassRF_train(X',int32(Y_new),length(unique(Y)),ntree,mtry,int32(ncat), ...

int32(maxcat), int32(sampsize), strata, Options, int32(ipi), ...

classwt, cutoff, int32(nodesize),int32(nsum));

model.nrnodes=nrnodes;

model.ntree=ntree;

model.xbestsplit=xbestsplit;

model.classwt=classwt;

model.cutoff=cutoff;

model.treemap=treemap;

model.nodestatus=nodestatus;

model.nodeclass=nodeclass;

model.bestvar = bestvar;

model.ndbigtree = ndbigtree;

model.mtry = mtry;

model.orig_labels=orig_labels;

model.new_labels=new_labels;

model.nclass = length(unique(Y));

model.outcl = outcl;

model.counttr = counttr;

if proximity

model.proximity = prox;

else

model.proximity = [];

end

model.localImp = impmat;

model.importance = impout;

model.importanceSD = impSD;

model.errtr = errtr';

model.inbag = inbag;

model.votes = counttr';

model.oob_times = sum(counttr)';

clear mexClassRF_train

%keyboard

1;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/506065.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统分析与控制_质量体系文件:测量系统分析控制程序

本公众号知识分享&#xff1a;体系管理、质量管理、书籍教程&#xff1b;国标行标、团标企标&#xff1b;课件教材、系统培训、资料下载、以及部分软件及教程等&#xff1b; 告诉我您的需求&#xff0c;小编随时恭候为您服务&#xff01;下面让我们一起开启本章内容学习&#x…

python商城源码_自学Python才几天,就成功编写出俄罗斯方块游戏,附自学教程

人们常说&#xff0c;python不适合做游戏&#xff0c;但我偏爱玩游戏&#xff0c;做不了大的&#xff0c;做个小的也行啊。于是&#xff0c;我在自己毫无基础的条件下&#xff0c;用两天时间学python基础理论&#xff0c;再用已有的俄罗斯方块游戏源码和源文件&#xff0c;在我…

matlab 中曲线颜色,matlab曲线颜色样式设置

满意答案南渡江ndj2013.09.03采纳率&#xff1a;43% 等级&#xff1a;12已帮助&#xff1a;19801人你好 这是我总结的画图资料比如画一条蓝色的x号线plot(x,y,bg)画图:线形:-实线 -. 点划线 --长虚线 :短虚线符号 颜色 符号 线形b 蓝 . 点c 青 。 圈g 绿 标记k 黑 - 实线m …

图像去模糊代码 python_用Keras搭建GAN:图像去模糊中的应用(附代码)

雷锋网 (公众号&#xff1a;雷锋网) 按&#xff1a;本文为 雷锋字幕组 编译的技术博客&#xff0c;原标题GAN with Keras: Application to Image Deblurring&#xff0c;作者为Raphal Meudec。翻译 | 廖颖 陈俊雅 整理 | 凡江2014年 Ian Goodfellow 提出了 生成对抗网络(GAN)…

小程序动态class_会后剧透!百度智能小程序的最新动态都在这儿了!

月活突破5亿&#xff0c;入驻智能小程序数量42万。这是百度智能小程序在万象-百度2020移动生态大会上交出的最新成绩单。当天&#xff0c;百度方面还以“生态进化&#xff0c;共创共荣”为主题&#xff0c;召开了智能小程序分论坛。分论坛上&#xff0c;百度特别邀请了百度副总…

matlab qtdecomp,Opencv图像识别从零到精通(25)------区域分裂与合并

区域分割一般认为有漫水填充&#xff0c;区域分裂与合并&#xff0c;分水岭&#xff0c;这篇是中间的区域分裂和合并。区域分裂合并算法的基本思想是先确定一个分裂合并的准则,即区域特征一致性的测度,当图像中某个区域的特征不一致时就将该区域分裂成4个相等的子区域,当相邻的…

去调频体制下的 rd算法_【技术文章】一次调频工作原理及控制 学习1+1

1、基本概念一次调频&#xff1a;PrimaryFrequencyControl。在电网实际运行中&#xff0c;当电量消耗与电量供给不匹配时&#xff0c;即可引起电网频率出现变化较小、变动周期较短的微小分量&#xff0c;这种频率扰动主要靠汽轮发电机组本身的调节系统直接自动调整汽轮机调门完…

tinyxml 读取文本节点_在Windows下使用TinyXML-2读取UTF-8编码包含中文字符的XML文件...

TinyXML-2 是一个用 C 开发的小巧、高效的 XML 解析工具&#xff0c;它在 GitHub 网站上的链接为&#xff1a;https://github.com/leethomason/tinyxml2 。它的结构非常精简&#xff0c;仅由 tinyxml2.h 和 tinyxml2.cpp 两个文件组成。TinyXML-2 能够处理 UTF-8 编码方式的 XM…

矩阵特征值的用matlab,[急求]谁可以用matlab帮我运行求矩阵特征值的命令???...

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼v Columns 1 through 60.0529 0.0228 - 0.0573i 0.0228 0.0573i 0.0222 0.0630i 0.0222 - 0.0630i -0.0630 0.0105i0.2249 -0.0870 0.2003i -0.0870 - 0.2003i 0.1077 0.2366i 0.1077 - 0.2366i 0.1861 0.0350i0.0977 -0.082…

蓝牙版本avrcp怎么选_500元内无线蓝牙耳机测评年轻人的第一款廉价蓝牙耳机怎么选?...

这是马克君的第 90 篇对比测评-建议佩戴耳机体验-?- 10款TWS耳机测评 -TWSTrue Wireless Stereo⇩真无线立体声自AirPods问世以来&#xff0c;真无线耳机的概念开始爆火?。虽然AirPods“真香”&#xff0c;但售价也是真滴贵&#xff0c;所以有没有便宜又好用的真无线蓝牙耳机…

kb4023057安装失败_微软重发Win10 KB4023057 补丁,推动Win10更新

8月29日早间消息&#xff1a;微软已经重新发布了Win10补丁KB4023057&#xff0c;其主要帮助用户升级到 Win10 2004或更新版本。微软表示&#xff0c;重新发布的补丁对 Windows Update 本身的可靠性进行了改进。此外&#xff0c;它还可以通过压缩用户目录中的文件来释放计算机上…

数据库查询语句慢如何优化_常见Mysql的慢查询优化方式

1 概念 MySQL的慢查询&#xff0c;全名是慢查询日志&#xff0c;是MySQL提供的一种日志记录&#xff0c;用来记录在MySQL中响应时间超过阀值的语句。 具体环境中&#xff0c;运行时间超过long_query_time值的SQL语句&#xff0c;则会被记录到慢查询日志中。 long_query_time的默…

pytorch中深度拷贝_pytorch:对比clone、detach以及copy_等张量复制操作

pytorch提供了clone、detach、copy_和new_tensor等多种张量的复制操作&#xff0c;尤其前两者在深度学习的网络架构中经常被使用&#xff0c;本文旨在对比这些操作的差别。1. clone返回一个和源张量同shape、dtype和device的张量&#xff0c;与源张量不共享数据内存&#xff0c…

php显示doc文件乱码,如何解决php doc 乱码问题

PHP下载DOC乱码最近做的一个系统,需要下载doc文件以前的代码下载完成后,打开总是乱码...google咯很久也没有解决办法后面总算搞定必须在Header之前进行清除,即 ob_end_clean()$file_size filesize($logName);ob_end_clean();header("Content-type:application/octet-stre…

c++ 多重背包状态转移方程_Python|动态规划关于0-1背包问题

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理以下文章来源于腾讯云&#xff0c;作者&#xff1a;算法与编程之美前言对学算法的同学来说&#xff0c;动态规划是其必学且较为重要的问题之一&#xff1b;…

golang string转int8_golang 中string和int类型相互转换

Notepad&plus;&plus; 默认快捷键Notepad绝对是windows下进行程序编辑的神器之一,要更快速的使用以媲美VIM,必须灵活掌握它的快捷键,下面对notepad默认的快捷键做个整理(其中有颜色的为常用招数): 1 ...DB2执行脚本经常会遇到数据库脚本放在.sql文件中,那么怎么去执…

java 第二天,Java复习第二天

1.idea里jar包和war的区别JAR(JAVA Archive 是类的归档文件)&#xff0c;JAR 文件不仅用于压缩和发布&#xff0c;而且还用于部署和封装库、组件和插件程序&#xff0c;并可被像编译器和 JVM 这样的工具直接使用。简单来说&#xff0c;jar包就像一个插件而且是打包已经写好的类…

qlistview 自定义控件_是否可以在QListView中添加自定义窗口小部件?

I have a large log data (100, 1000, 100000, ... records) and I want to visualize it in the following manner:Which widget (e.g. QListView, QListWidget) should I use and how, in order to stay away from performance and memory problems?解决方案Is it possible …

php 零宽断言,正则表达式之零宽断言实例详解

这篇文章主要介绍了正则表达式之零宽断言,简单介绍了零宽断言的概念、分类及php实现技巧与相关注意事项,需要的朋友可以参考下本文实例讲述了正则表达式之零宽断言。分享给大家供大家参考&#xff0c;具体如下&#xff1a;前言之前我曾写了一篇关于正则表达式的文章(http://www…

element ui 多个子组件_vue前端UI框架,一点都不圆润,盘它!

面对众多vue前端UI框架&#xff0c;看着它们干干巴巴、麻麻赖赖的样子&#xff0c;一点都不圆润&#xff0c;跟我一起盘它&#xff01;Vue移动端UI框架1、Vux&#xff08;star:15620)VUX&#xff08;读音 [v’ju:z]&#xff0c;同 views&#xff09;是基于WeUI和Vue(2.x)开发的…