【视觉SLAM入门】5.2. 2D-3D PNP 3D-3D ICP BA非线性优化方法 数学方法SVD DLT

"养气之学,戒之躁急"

  • 1. 3D-2D PNP
    • 1.1 代数法
      • 1.1.1 DLT(直接线性变换法)
      • 1.1.2. P3P
    • 1.2 优化法
      • BA (Bundle Adjustment)法
  • 2. 3D-3D ICP
    • 2.1 代数法
      • 2.1.1 SVD方法
    • 2.2 优化(BA)法
      • 2.2.2 非线性优化方法

前置事项:

1. 3D-2D PNP

该问题描述为:当我们知道n 个 3D 空间点以及它们的投影位置时,如何估计相机所在的位姿

1.1 代数法

1.1.1 DLT(直接线性变换法)

解决的问题:已知空间点 P = ( X , Y , Z , 1 ) T P = (X, Y, Z, 1)^T P=(X,Y,Z,1)T 和它投影点 x 1 = ( u 1 , v 1 , 1 ) T x_1 = (u_1, v_1, 1)^T x1=(u1,v1,1)T。求解相机位姿 R , t \boldsymbol {R, t} R,t
为求解,定义增广矩阵
[ R ∣ t ] = ( t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ) \boldsymbol {[R| t]} = \begin{pmatrix} t_1&t_2&t_3&t_4 \\\;\\ t_5&t_6&t_7&t_8 \\\;\\ t_9&t_{10}&t_{11}&t_{12} \end{pmatrix} [Rt]= t1t5t9t2t6t10t3t7t11t4t8t12
我们的目的就是求解这个增广矩阵,利用坐标关系得到:
s ( u 1 v 1 1 ) = ( t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ) ( X Y Z 1 ) s\begin{pmatrix} u_1&v_1&1 \end{pmatrix} = \begin{pmatrix} t_1&t_2&t_3&t_4 \\\;\\ t_5&t_6&t_7&t_8 \\\;\\ t_9&t_{10}&t_{11}&t_{12} \end{pmatrix}\begin{pmatrix} X&Y&Z&1 \end{pmatrix} s(u1v11)= t1t5t9t2t6t10t3t7t11t4t8t12 (XYZ1)

  • 最后一行可以求出 s \boldsymbol s s , 则方程中有12个未知数,需要至少六对点, 可以线性变换 ;
  • 匹配点大于6对时,可以用SVD等方法对超定方程做最小二乘;
  • 缺点:忽略了旋转矩阵自身约束 ----> 找一个旋转矩阵近似(QR分解),把结果重新投影到 S E ( 3 ) SE(3) SE(3) 流形。

1.1.2. P3P

三对(世界坐标系下)3D-2D(成像平面)匹配点 + 一对验证点。原理图如下:
图源SLAM14讲

根据相似三角形的相似关系
Δ O a b − Δ O A B , Δ O b c − Δ O B C , Δ O a c − Δ O A C ⇓ 有如下关系 O A 2 + O B 2 − 2 O A ⋅ O B ⋅ c o s < a , b > = A B 2 O B 2 + O C 2 − 2 O B ⋅ O C ⋅ c o s < b , c > = B C 2 O A 2 + O C 2 − 2 O A ⋅ O C ⋅ c o s < a , c > = A C 2 \Delta Oab - \Delta OAB, \quad \Delta Obc - \Delta OBC, \quad \Delta Oac - \Delta OAC \\\;\\\Downarrow 有如下关系 \\\;\\OA^2 + OB^2 -2OA\cdot OB \cdot cos<a,b> = AB^2\\ OB^2 + OC^2 -2OB\cdot OC \cdot cos<b,c> = BC^2 \\ OA^2 + OC^2 -2OA\cdot OC \cdot cos<a,c> = AC^2 ΔOabΔOAB,ΔObcΔOBC,ΔOacΔOAC有如下关系OA2+OB22OAOBcos<a,b>=AB2OB2+OC22OBOCcos<b,c>=BC2OA2+OC22OAOCcos<a,c>=AC2
x = O A / O C , y = O B / O C , v = A B 2 / O C 2 , u v = B C 2 / O C 2 , w v = A C 2 / O C 2 x=OA/OC\quad, y = OB/OC,\quad v=AB^2/OC^2,\quad uv=BC^2/OC^2,\quad wv=AC^2/OC^2 x=OA/OC,y=OB/OC,v=AB2/OC2,uv=BC2/OC2,wv=AC2/OC2

  • 推理可得:
    ( 1 − u ) y 2 − u x 2 − c o s < b , c > y + 2 u x y ⋅ c o s < a , b > + 1 = 0 ( 1 − w ) x 2 − w y 2 − c o s < a , c > x + 2 w x y ⋅ c o s < a , b > + 1 = 0 (1-u)y^2-ux^2-cos<b,c>y+2uxy\cdot cos<a,b>+1=0 \\(1-w)x^2-wy^2-cos<a,c>x+2wxy\cdot cos<a,b>+1=0 (1u)y2ux2cos<b,c>y+2uxycos<a,b>+1=0(1w)x2wy2cos<a,c>x+2wxycos<a,b>+1=0

  • 求解完成,其中只有 x , y x,y x,y未知,二元二次方程组,可以用吴氏消化法求解。最终最多得到4个解,用验证点对进行验证,得到正确的点即可。


  • 只利用3对点的信息,无法利用更多
  • 如果点收到噪声影响,算法失效
  • 改进的有 E P n P , U P n P EPnP, UPnP EPnP,UPnP

1.2 优化法

BA (Bundle Adjustment)法

  • 利用最小化重投影误差来做,简单来说就是已经有相机位姿,然后用该位姿预测得到预测值,再用 预测减观测(投影) 为误差构建最小二乘问题,重新优化相机位姿和空间点位置。重投影示意图如下:
    在这里插入图片描述

一种通用做法:用来对PnP或ICP的结果进行优化。

  • 假设通过PnP已经获得相机的位姿(不精确的) R , t \boldsymbol {R, t} R,t ,它的李代数为 ξ \boldsymbol \xi ξ
  • n个三维空间点 P i = [ X i , Y i , Z i ] T \boldsymbol P_i = [X_i, Y_i, Z_i]^T Pi=[Xi,Yi,Zi]T ,它的投影坐标为 u i = [ u i , v i ] T \boldsymbol u_i = [u_i, v_i]^T ui=[ui,vi]T ;

用矩阵形式写出像素位置与空间点公式(理论上成立的等式(没有误差时)):
s i [ u i v i 1 ] = K e x p ( ξ ˆ ) [ X i Y i Z i 1 ] ( 1 ) ⇓ 即 s i u i = K ⋅ e x p ( ξ ˆ ) ⋅ P i ( 2 ) ⇓ 构建最小二乘问题 ξ ∗ = a r g min ⁡ ξ 1 2 ∑ i = 1 n ∥ u i − 1 s i K exp ⁡ ( ξ ˆ ) P i ∥ 2 2 ( 3 ) s_i\begin{bmatrix}u_i\\v_i\\1\end{bmatrix} = Kexp(\xi\^{})\begin{bmatrix}X_i\\Y_i\\Z_i\\1\end{bmatrix} \qquad\qquad\qquad\qquad (1)\\\; \Downarrow即\qquad \qquad\qquad\qquad\qquad\\\; \\s_i\boldsymbol u_i = K\cdot exp(\xi\^{})\cdot P_i \qquad \qquad\qquad\qquad\qquad(2)\\\; \\\Downarrow 构建最小二乘问题\qquad \qquad\\\; \\\xi^* = arg\min\limits_\xi \frac{1}{2}\sum\limits_{i=1}^n\begin{Vmatrix}u_i- \frac{1}{s_i} K\exp(\xi\^{})P_i\end{Vmatrix}^2_2\qquad(3) si uivi1 =Kexp(ξˆ) XiYiZi1 (1)siui=Kexp(ξˆ)Pi(2)构建最小二乘问题ξ=argξmin21i=1n uisi1Kexp(ξˆ)Pi 22(3)
在上式中:

  • (3)中的 u i \boldsymbol u_i ui :投影位置(观测值---------------------------已知) (2D)
  • (2)和(1)中的 u i \boldsymbol u_i ui:重投影位置(预测值-根据(1)式计算得到) (2D)
  • P i \boldsymbol {P_i} Pi : 空间点位置(已知) (3D)

重投影误差:用3D和估计位姿投影得到的位置和观测得到的位置作差得到的。实际中利用很多点调整相机位姿使得这个值变小,但不会精确为0.

  • 求解这个最小二乘问题,由之前的李代数左乘模型,非线性优化的知识(推理过程略,详见视觉SLAM14讲7.7.3),记变换到相机坐标系下的空间点坐标 P ′ \boldsymbol {P'} P 这里直接给结果:
    在这里插入图片描述
    这个雅克比矩阵描述了重投影误差关于相机位姿李代数的一阶变化关系 ( s e ( 3 ) 这里是平移在前,旋转在后,则如上市,否则前后三列互换 se(3)这里是平移在前,旋转在后,则如上市,否则前后三列互换 se(3)这里是平移在前,旋转在后,则如上市,否则前后三列互换)。

此外,还有 e e e 关于空间点 P P P 的导数:

在这里插入图片描述


以上两个导数矩阵分别是观测相机方程关于相机位姿和特征点的导数矩阵。在优化中能提供迭代方向。

2. 3D-3D ICP

问题:有一组匹配好的3D点:
P = { p 1 , . . . , p n } , P ′ = { p 1 ′ , . . . , p n ′ } P=\left\{p_1, ..., p_n \right\}, \qquad P' = \left\{p'_1, ..., p'_n\right\} P={p1,...,pn},P={p1,...,pn}
欲求一个欧式变换 R , t R,t R,t,使:
∀ i , p i = R p i ′ + t {\forall i}, \qquad p_i = Rp'_i + t i,pi=Rpi+t

用ICP(Iterative Closest Point)求解,没有出现相机模型,和相机无关,故激光SLAM中也有ICP。

2.1 代数法

2.1.1 SVD方法

定义误差:
e i = p i − ( R p i ′ + t ) e_i = p_i - (Rp'_i + t) ei=pi(Rpi+t)
构建最小二乘问题:使得误差平方和最小
min ⁡ R , t J = 1 2 ∑ i = 1 n ∣ ∣ p i − ( R p i ′ + t ) ∣ ∣ 2 2 \min\limits_{R,t} J = \frac{1}{2}\sum\limits_{i=1}^n||p_i-(Rp'_i+t)||_2^2 R,tminJ=21i=1n∣∣pi(Rpi+t)22
求解问题:

  1. 定义两组点质心
    p = 1 n ∑ i = 1 n ( p i ) , p ′ = 1 n ∑ i = 1 n ( p i ′ ) p=\frac{1}{n}\sum\limits_{i=1}^n(p_i),\qquad p'=\frac{1}{n}\sum\limits_{i=1}^n(p'_i) p=n1i=1n(pi),p=n1i=1n(pi)
  2. 带入上边误差最小二乘函数整理,优化后结果:
    min ⁡ R , t J = 1 2 ∑ i = 1 n ∣ ∣ p i − p − R ( p i ′ − p ′ ) ∣ ∣ 2 + ∣ ∣ p − R p ′ − t ∣ ∣ 2 \min\limits_{R,t}J = \frac{1}{2}\sum\limits_{i=1}^n||p_i-p-R(p'_i-p')||^2+||p-Rp'-t||^2 R,tminJ=21i=1n∣∣pipR(pip)2+∣∣pRpt2
    观察,左边只和R有关,右边只和质心有关,有R时,令右边等于0,t可得。接下来着重求R
  3. 展开上式中关于 R R R 平方项,定义一个 W W W,最终用SVD分解可得R,得到后求解t即可。
    R = U V T R=UV^T R=UVT

2.2 优化(BA)法

2.2.2 非线性优化方法

和前边介绍的一样,构建G2O,然后导数用李代数扰动模型即可。
min ⁡ ξ = 1 2 ∑ i = 1 n ∣ ∣ ( p i − e x p ( ξ \qquad\qquad\qquad\qquad\qquad\qquad\min\limits_\xi = \frac{1}{2}\sum\limits_{i=1}^n||(p_i-exp(\xi ξmin=21i=1n∣∣(piexp(ξ^ ) p i ′ ) ∣ ∣ 2 2 )\;p'_i)||^2_2 )pi)22

注意:在唯一解的情况下,只要我们能找到极小值解,那么该值就是全局最优解。意味着可以任意选取初始值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录《现有docker中安装spark3.4.1》

基础docker环境中存储hadoop3--方便后续查看 参考&#xff1a; 实践&#xff1a; export JAVA_HOME/opt/apache/jdk1.8.0_333 export SPARK_MASTER_IP192.168.0.220 export SPARK_WORKER_MEMORY4g export SPARK_WORKER_CORES2 export SPARK_EXECUTOR_MEMORY4g export HADOOP_H…

Mongodb两种启动方法

一、命令行启动 1.修改存放数据库的位置 说明&#xff1a;E:\data\mongodb&#xff1b;我在E盘创建的文件夹mongodb mongod --dbpathE:\data\mongodb 2.成功启动 说明&#xff1a;默认端口27017&#xff0c;代表已经启动成功 &#xff0c;并在mongodb自动创建文件 二、配置项…

华为AR路由器 典型配置案例——以太网交换

目录 Eth-Trunk 例&#xff1a;配置三层链路聚合 组网需求 操作步骤 检查配置结果 配置脚本 VLAN 举例&#xff1a;配置基于接口划分VLAN&#xff0c;实现同一VLAN内的互通&#xff08;同设备&#xff09; 组网需求 操作步骤 检查配置结果 配置脚本 举例&#xff…

TCP半连接队列和全连接队列

目录 什么是 TCP 半连接队列和全连接队列&#xff1f; TCP 全连接队列溢出 如何知道应用程序的 TCP 全连接队列大小&#xff1f; 如何模拟 TCP 全连接队列溢出的场景&#xff1f; 全连接队列溢出会发生什么 ? 如何增大全连接队列呢 ? TCP 半连接队列溢出 如何查看 TC…

22款美规奔驰S500升级原厂香氛负离子系统,清香宜人,久闻不腻

奔驰原厂香氛合理性可通过车内空气调节组件营造芳香四溢的怡人氛围。通过更换手套箱内香氛喷雾发生器所用的香水瓶&#xff0c;可轻松选择其他香氛。香氛的浓度和持续时间可调。淡雅的香氛缓缓喷出&#xff0c;并且在关闭后能够立刻散去。车内气味不会永久改变&#xff0c;香氛…

Linux 虚拟机安装 hadoop

目录 1 hadoop下载 2 解压hadoop 3 为 hadoop 文件夹改名 4 给 hadoop 文件夹赋权 5 修改环境变量 6 刷新环境变量 7 在hadoop313目录下创建文件夹data 8 检查文件 9 编辑 ./core-site.xml文件 10 编辑./hadoop-env.sh文件 11 编辑./hdfs-site.xml文件 12 编辑./mapr…

【C++入门到精通】C++入门 —— 模版(template)

阅读导航 前言一、模版的概念二、函数模版1. 函数模板概念2. 函数模板定义格式3. 函数模板的原理4. 函数模版的实例化&#x1f6a9;隐式实例化&#x1f6a9;显式实例化 5. 函数模板的匹配原则 三、类模板1. 类模板的定义格式2. 类模板的实例化 四、非类型模板参数1. 概念2. 定义…

动态规划之路径问题

路径问题 1. 不同路径&#xff08;medium&#xff09;2. 不同路径II&#xff08;medium&#xff09;3. 礼物最大值&#xff08;medium&#xff09;4. 下降路径最小和&#xff08;medium&#xff09;5. 最⼩路径和&#xff08;medium&#xff09;6. 地下城游戏&#xff08;hard&…

图床项目进度(一)——UI首页

1. 前言 前面我不是说了要做一个图床吗&#xff0c;现在在做ui。 我vue水平不够高&#xff0c;大部分参考b站项目照猫画虎。 vue实战后台 我使用ts&#xff0c;vite&#xff0c;vue3进行了重构。 当然&#xff0c;我对这些理解并不深刻&#xff0c;许多代码都是游离于表面&am…

基于决策树(Decision Tree)的乳腺癌诊断

决策树(DecisionTree)学习是以实例为基础的归纳学习算法。算法从--组无序、无规则的事例中推理出决策树表示形式的分类规则,决策树也能表示为多个If-Then规则。一般在决策树中采用“自顶向下、分而治之”的递归方式,将搜索空间分为若千个互不相交的子集,在决策树的内部节点(非叶…

Spring事务和事务传播机制

目录 一. Spring 中事务的实现 1. 编程式事务 2. 声明式事务 3. Transaction 参数的设置 4. Transaction 的隔离级别 5. Transaction 的工作原理 二. Spring 事务传播机制 七种事务传播机制 支持当前事务 不支持当前事务 嵌套事务 一. Spring 中事务的实现 1. 编程式事…

mmdetection基于 PyTorch 的目标检测开源工具箱 入门教程

安装环境 MMDetection 支持在 Linux&#xff0c;Windows 和 macOS 上运行。它需要 Python 3.7 以上&#xff0c;CUDA 9.2 以上和 PyTorch 1.8 及其以上。 1、安装依赖 步骤 0. 从官方网站下载并安装 Miniconda。 步骤 1. 创建并激活一个 conda 环境。 conda create --name…

Docker是什么?详谈它的框架、使用场景、优势

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、什么是 Docker&#xff1f; 二、Docker 的架构 1、Docker客户端 2、Docker守护进程 3、Docker镜像 4、Docker容器 5、Docker…

【业务功能篇76】微服务网关路由predicates断言条件-filters路由转换地址-跨域问题-多级目录树化层级设计-mybatisPlus逻辑删除

业务开发-基础业务-分类管理 启动renren-fast如果出现如下错误 -Djps.track.ap.dependenciesfalse 添加相关配置即可 分类管理 1.后端分类接口 JDK8特性&#xff1a;https://blog.csdn.net/qq_38526573/category_11113126.html 在后端服务中我们需要查询出所有的三级分类信…

汽车摩托车零部件出口管理ERP解决方案

近年来&#xff0c;随着全球经济的发展&#xff0c;人们对交通工具的需求增加&#xff0c;国内汽车、摩托车市场的不断扩大&#xff0c;以及国内制造技术的不断提高&#xff0c;中国汽车、摩托车零部件出口业务迎来了广阔的发展前景&#xff0c;带动了汽车配件和摩托车配件市场…

分布式下的session共享问题

首页我们确定在分布式的情况下session是不能共享的。 1.不同的服务&#xff0c;session不能共享&#xff0c;也就是微服务的情况下 2.同一服务在分布式情况&#xff0c;session同样不能共享&#xff0c;也会是分布式情况 分布式下session共享问题解决方案(域名相同) 1.session复…

IDEA常用插件之类Jar包搜索Maven Search

文章目录 IDEA常用插件之类Jar包搜索Maven Search说明安装插件使用方法1.搜索自己要搜的jar包2.根据类名搜索 IDEA常用插件之类Jar包搜索Maven Search 说明 它可以帮助用户快速查找和浏览Maven中央存储库中可用的依赖项和插件。它可以帮助用户更方便地管理项目依赖项。 安装…

idea 对JavaScript进行debug调试

文章目录 1.新增 JavaScript Debug 配置2.配置访问地址3.访问url. 打断点测试 前言 : 工作中接手别人的前端代码没有注释&#xff0c;看浏览器的network或者console切来切去&#xff0c;很麻烦&#xff0c;可以试试idea自带的javscript debug功能。 1.新增 JavaScript Debug 配…

『SEQ日志』在 .NET中快速集成轻量级的分布式日志平台

&#x1f4e3;读完这篇文章里你能收获到 如何在Docker中部署 SEQ&#xff1a;介绍了如何创建和运行 SEQ 容器&#xff0c;给出了详细的执行操作如何使用 NLog 接入 .NET Core 应用程序的日志&#xff1a;详细介绍了 NLog 和 NLog.Seq 来配置和记录日志的步骤日志记录示例&…

UE4/5Niagara粒子特效之Niagara_Particles官方案例:3.3->4.3

目录 3.3 Visibility Tag 左边的发射器&#xff1a; 发射器更新 粒子生成 粒子更新 右边的发射器 和左边发射器不同的地方 3.4 Texture Sampling 发射器更新 粒子生成 粒子更新 4.1Play Audio Per Particle 系统 第三个发射器 发射器更新 粒子生成 粒子更新 第二个…