微服务中间件--微服务保护

微服务保护

  • 微服务保护
    • a.sentinel
    • b.sentinel限流规则
      • 1) 流控模式
        • 1.a) 关联模式
        • 1.b) 链路模式
      • 2) 流控效果
        • 2.a) 预热模式
        • 2.b) 排队等待
      • 3) 热点参数限流
    • c.隔离和降级
      • 1) Feign整合Sentinel
      • 2) 线程隔离
        • 2.a) 线程隔离(舱壁模式)
      • 3) 熔断降级
        • 3.a) 熔断策略-慢调用
        • 3.b) 熔断策略-异常比例、异常数
    • d.授权规则及规则持久化
      • 1) 授权规则
      • 2) 自定义异常结果
      • 3) 规则持久化
        • 3.a) 规则管理模式

微服务保护

a.sentinel

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
  • 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离
  • 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求
  • 限制业务访问的QPS(每秒处理请求的数量),避免服务因流量的突增而故障。

Sentinel是阿里巴巴开源的一款微服务流量控制组件。

微服务整合Sentinel

1.引入sentinel依赖:

<!--引入sentinel依赖-->
<dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2.配置控制台地址:

spring:cloud:sentinel:transport:dashboard: localhost:8080 # sentinel控制台地址

3.访问微服务的任意端点,触发sentinel监控

b.sentinel限流规则

簇点链路

簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint: controller中的每一个方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

在这里插入图片描述

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5。然后利用jemeter测试。

1.设置流控规则:

在这里插入图片描述

2.jemeter测试:
在这里插入图片描述

1) 流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式:

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

在这里插入图片描述

1.a) 关联模式

  • 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先对支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

在这里插入图片描述

当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

需求:

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务
  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

在这里插入图片描述

满足下面条件可以使用关联模式:

  • 两个有竞争关系的资源
  • 一个优先级较高,一个优先级较低

1.b) 链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

例如有两条请求链路:

  • /test1 -> /common
  • /test2 -> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

在这里插入图片描述

需求:

有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  • 1.在OrderService中添加一个queryGoods方法,不用实现业务
  • 2.在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
  • 3.在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
  • 4.给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解

@SentinelResource("goods")
public void queryGoods(){System.err.println("查询商品");
}

Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:

spring:cloud:sentinel:web-context-unify: false # 关闭context整合

2) 流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

在这里插入图片描述

2.a) 预热模式

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 threshold / coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.

例如,我设置QPS的threshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

在这里插入图片描述

案例:需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

在这里插入图片描述

2.b) 排队等待

排队等待是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

在这里插入图片描述

3) 热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

在这里插入图片描述

在这里插入图片描述

在热点参数限流的高级选项中,可以对部分参数设置例外配置:

在这里插入图片描述

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

案例:给/order/{orderId}这个资源添加热点参数限流,规则如下:

  • 默认的热点参数规则是每1秒请求量不超过2
  • 给102这个参数设置例外:每1秒请求量不超过4
  • 给103这个参数设置例外:每1秒请求量不超过10

热点参数限流对默认的SpringMVC资源无效,只对添加@SentinelResource注解的方法产生效果

@SentinelResource("hot")
@GetMapping("{orderId}")
public Order queryOrderByUserId(@PathVariable("orderId") Long orderId) {// 根据id查询订单并返回return orderService.queryOrderById(orderId);
}

在这里插入图片描述

c.隔离和降级

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。

在这里插入图片描述

1) Feign整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

1.修改OrderService的application.yml文件,开启Feign的Sentinel功能

feign:sentinel:enabled: true # 开启Feign的Sentinel功能

2.给FeignClient编写失败后的降级逻辑

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理 (推荐)

步骤一:在feing-api项目的clients.fallback中定义类,实现FallbackFactory:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {@Overridepublic UserClient create(Throwable throwable) {return new UserClient() {@Overridepublic User findById(Long id) {log.error("查询用户异常", throwable);return new User();}};}
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

public class DefaultFeignConfiguration {@Beanpublic UserClientFallbackFactory userClientFallbackFactory(){return new UserClientFallbackFactory();}
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {@GetMapping("/user/{id}")User findById(@PathVariable("id") Long id);
}

在这里插入图片描述

2) 线程隔离

线程隔离有两种方式实现:

  • 线程池隔离
  • 信号量隔离QPS(Sentinel默认采用)

在这里插入图片描述

线程池隔离

  • 优点:
    • 支持主动超时
    • 支持异步调用
  • 缺点
    • 线程的额外开销比较大
  • 场景
    • 低扇出

信号量隔离

  • 优点:
    • 轻量级,无额外开销
  • 缺点:
    • 不支持主动超时
    • 不支持异步调用
  • 场景
    • 高频调用
    • 高扇出

2.a) 线程隔离(舱壁模式)

在添加限流规则时,可以选择两种阈值类型:

  • QPS:就是每秒的请求数,在快速入门中已经演示过
  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现舱壁模式。

案例:给 UserClient的查询用户接口设置流控规则,线程数不能超过 2

在这里插入图片描述

3) 熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器熔断策略有三种:慢调用、异常比例、异常数

在这里插入图片描述

3.a) 熔断策略-慢调用

  • 慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:

在这里插入图片描述

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

提示:为了触发慢调用规则,我们需要修改UserService中的业务,增加业务耗时:

在这里插入图片描述

在这里插入图片描述

3.b) 熔断策略-异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:

在这里插入图片描述

在这里插入图片描述

案例:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

提示:为了触发异常统计,我们需要修改UserService中的业务,抛出异常:

在这里插入图片描述

在这里插入图片描述

d.授权规则及规则持久化

1) 授权规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式

  • 白名单:来源(origin)在白名单内的调用者允许访问
  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

在这里插入图片描述

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

从request中获取一个名为origin的请求头,作为origin的值:

在order-service中创建sentinel包

package cn.itcast.order.sentinel;@Component
public class HeaderOriginParser implements RequestOriginParser {@Overridepublic String parseOrigin(HttpServletRequest request) {// 1.获取请求头String origin = request.getHeader("origin");// 2.非空判断if (StringUtils.isEmpty(origin)) {origin = "blank";}return origin;}
}

在gateway服务中,利用网关的过滤器添加名为gateway的origin头:

spring:gateway:default-filters:- AddRequestHeader=Truth, ABCDEFGHIJKLMN- AddRequestHeader=origin, gateway # 添加名为origin的请求头,值为gateway

在这里插入图片描述

2) 自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

在这里插入图片描述

BlockException包含很多个子类,分别对应不同的场景:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

在order-service的sentinel包中定义类,实现BlockExceptionHandler接口:

package cn.itcast.order.sentinel;@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException){msg = "请求被限流";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

3) 规则持久化

3.a) 规则管理模式

Sentinel的控制台规则管理有三种模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失
  • pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
  • push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

H3C 无线网络vlan pool架构案例三层组网web配置

实验的是目标就是要实现华为vlan pool那种应用&#xff0c; 整个园区发一种ssid信号&#xff0c;但是连接的客户端可以随机连上后进入不同的vlan&#xff0c;在这大型园区网非常有用。 这种方法也适合同一个ssid情况下&#xff0c;在不同的位置关联不同的vlan 开启自动固化、…

为什么选择网络安全?为什么说网络安全是IT行业最后的红利?

一、为什么选择网络安全&#xff1f; 这几年随着我国《国家网络空间安全战略》《网络安全法》《网络安全等级保护2.0》等一系列政策/法规/标准的持续落地&#xff0c;网络安全行业地位、薪资随之水涨船高。 未来3-5年&#xff0c;是安全行业的黄金发展期&#xff0c;提前踏入…

SpringBoot 响应头添加版本号、打包项目后缀添加版本号和时间

文章目录 响应头添加版本号获取版本号添加响应处理器请求结果 打包项目后缀添加版本号和时间实现打包结果 响应头添加版本号 获取版本号 在 pom.xml 中&#xff0c;在 project.version 下定义版本号 在 application.yml 获取 pom.xml 中 project.version 中的信息 添加响应处…

JAVA结合AE(Adobe After Effects)AE模板文件解析生成视频实现类似于逗拍(视频DIY)的核心功能

最近看抖音上有很多各种视频表白生成的直播而且直播间人很多&#xff0c;于是就思考如何实现的视频内的文字图片内容替换的呢 &#xff0c;答案需要用到类似与逗拍一样的视频DIY的功能&#xff0c;苦于我是java&#xff0c;百度了半天没有办法和思路&#xff0c;总不能为了一个…

运维高级学习--Docker(二)

1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 #拉取mysql5.6和owncloud镜像 [rootlocalhost ~]# docker pull mysql:5.6 [rootlocalhost ~]# docker pull owncloud [rootlocalhost ~]# docker images REPOSITORY TAG IMAGE ID CREATED …

LC balun设计

文章目录 1 、LC balun理论推导2、ADS仿真验证结果2.1原理图 3、复数阻抗的LC balun设计3.1示例13.2、示例1的ADS仿真验证3.3示例23.4示例2的ADS仿真结果 4、others 1 、LC balun理论推导 LC 巴伦的拓扑结构如下&#xff1a; 根据电流电压方程有&#xff1a; 化简过程如下&am…

C++破坏电脑病毒

写了这么多python病毒&#xff0c;今天我来给大家分享一个C病毒。 创作背景&#xff1a;我有个同学对电脑十分精通&#xff0c;而且对MBR十分感兴趣&#xff0c;他跟我分享了他怎么把MBR搞报废的历程。听完之后&#xff0c;我开始研究MBR。用python研究了2个月&#xff0c;结果…

GEE-PIE遥感大数据处理技术

随着航空、航天、近地空间等多个遥感平台的不断发展&#xff0c;近年来遥感技术突飞猛进。由此&#xff0c;遥感数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量也大幅增长&#xff0c;使其越来越具有大数据特征。对于相关研究而言&#xff0c;遥感大数据的出现为其提…

Mac上传项目源代码到GitHub的修改更新

Mac上传项目源代码到GitHub的修改更新 最近在学习把代码上传到github&#xff0c;不得不说&#xff0c;真的还挺方便 这是一个关于怎样更新项目代码的教程。 首先&#xff0c;在本地终端命令行打开至项目文件下第一步&#xff1a;查看当前的git仓库状态&#xff0c;可以使用git…

Python Jail 沙盒逃逸 合集

原理 沙箱是一种安全机制&#xff0c;用于在受限制的环境中运行未信任的程序或代码。它的主要目的是防止这些程序或代码影响宿主系统或者访问非授权的数据。 在 Python 中&#xff0c;沙箱主要用于限制 Python 代码的能力&#xff0c;例如&#xff0c;阻止其访问文件系统、网…

Django实现音乐网站 ⑿

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是加载静态资源和推荐页-轮播图、推荐歌单功能开发。 目录 加载静态资源 引入jquery.js 引入bootstrap资源文件 创建基类模板样式文件 推荐页开发 轮播图开发 下载 加载swiper 自定义引入继承块设置 使用…

npm install 安装依赖,报错 Host key verification failed

设置 git 的身份和邮箱 git config --global user.name "你的名字" > 用户名 git config --global user.email “你的邮箱" > 邮箱进入 > 用户 > [你的用户名] > .ssh文件夹下,删除 known_hosts 文件即可 进入之后有可能会看到 known_hosts…

android外卖点餐界面(期末作业)

效果展示&#xff1a; AndroidMainFest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"><a…

Vue使用Element的表格Table显示树形数据,多选框全选无法选中全部节点

使用Element的组件Table表格&#xff0c;当使用树形数据再配合上多选框&#xff0c;如下&#xff1a; 会出现一种问题&#xff0c;点击左上方全选&#xff0c;只能够选中一级树节点&#xff0c;子节点无法被选中&#xff0c;如图所示&#xff1a; 想要实现点击全选就选中所有的…

IDEA中导出Javadoc遇到的GBK编码错误的解决思路和应用

IDEA中导出Javadoc遇到的GBK编码错误的解决思路和应用 ​ 当我们在导出自己写的项目的api文档的时候呢&#xff0c;有的时候会出现以下问题&#xff1a;也就是GBK编码错误不可导出 错误描述&#xff1a;编码GBK的不可映射字符无法导出&#xff0c;可以看出这是我们自己写的中文…

Ansible学习笔记(二)

3.ansible的使用示例&#xff08;playbook&#xff09; 1.创建mysql 账户和mysql 组的 playbook ---#create mysql user and group - hosts: allremote_user: roottasks:- name: create groupgroup: namemysql systemyes gid306- name: create useruser: namemysql systemyes…

webpack 从入门到放弃!

webpack webpack于2012年3月10号诞生&#xff0c;作者是Tobias(德国)。参考GWT(Google Web Toolkit)的code splitting功能在webpack中进行实现。然后在2014年Instagram团队分享性能优化时&#xff0c;提出使用webpack的code splitting特性从而大火。 现在webpack的出现模糊了任…

快速提高写作生产力——使用PicGo+Github搭建免费图床,并结合Typora

文章目录 简述PicGo下载PicGo获取Token配置PicGo结合Typora总结 简述PicGo PicGo: 一个用于快速上传图片并获取图片 URL 链接的工具 PicGo 本体支持如下图床&#xff1a; 七牛图床 v1.0腾讯云 COS v4\v5 版本 v1.1 & v1.5.0又拍云 v1.2.0GitHub v1.5.0SM.MS V2 v2.3.0-b…

drools8尝试(加单元测试)

drools8的maven模板项目里没有单元测试, 相比而言drools7有个非常好的test senorios 那就自己弄一个 文件是.http后缀的,写了个简单的例子如下 //测试交通违章 POST http://localhost:8080/Traffic Violation accept: application/json Content-Type: application/json{&q…

代码pytorch-adda-master跑通记录

前言 最近在学习迁移学习&#xff0c;ADDA算法&#xff0c;由于嫌自己写麻烦&#xff0c;准备先跑通别人的代码。 代码名称&#xff1a;pytorch-adda-master 博客&#xff1a;https://www.cnblogs.com/BlairGrowing/p/17020378.html github地址&#xff1a;https://github.com…