回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49621.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习知识点总结:什么是EM(最大期望值算法)

什么是EM(最大期望值算法) 在现实生活中,苹果百分百是苹果,梨百分白是梨。 生活中还有很多事物是概率分布,比如有多少人结了婚,又有多少人有工作, 如果我们想要调查人群中吸大麻者的比例呢?敏感问题很难得…

【VR】SteamVR2.0的示例场景在哪里

💦本专栏是我关于VR开发的笔记 🈶本篇是——在哪里可以找到SteamVR2.0的示例场景 SteamVR2.0的示例场景在哪里 1. 逐步打开方式2. 快速打开方式 1. 逐步打开方式 Assets——SteamVR——InteractionSystem——Samples——>Interactions_Example 2. 快…

win11 python 调用edge调试过程

1、下载对应版本的驱动程序: https://developer.microsoft.com/zh-cn/microsoft-edge/tools/webdriver/ 2、和系统版本对应的exe文件(x86、x64要对应)放置的固定的目录,我放到了system32下了; 3、PATH路径添加windows/system32目录&#x…

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测,KOA-…

Postman项目实战一

项目简介:外卖任务委派系统 测试脚本: 登录,获取token创建任务,获取任务id根据id,修改任务根据id,查询任务根据id,删除任务根据id,验证任务已被删除 步骤: 1.创建Col…

工业生产全面感知!工业感知云来了

面向工业企业数字化转型需求,天翼物联基于感知云平台创新能力和5G工业物联数采能力,为客户提供工业感知云服务,包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务,构建工业感知神经系统新型数…

C++ 条件运算符 ? :

Exp1 ? Exp2 : Exp3;其中,Exp1、Exp2 和 Exp3 是表达式。请注意冒号的使用和位置。? : 表达式的值取决于 Exp1 的计算结果。如果 Exp1 为真,则计算 Exp2 的值,且 Exp2 的计算结果则为整个 ? : 表达式的值。如果 Exp1 为假,则计…

【TypeScript】抽象类(基类)

抽象类(Abstract Class)是 TypeScript 中一种特殊的类,它不能直接实例化,只能被继承。抽象类用于定义一些共同的属性和方法,但又不能完整地实例化的类,它可以作为其他类的基类,通过继承来共享属…

C++(Qt)软件调试---gdb调试入门用法(12)

gdb调试—入门用法(1) 文章目录 gdb调试---入门用法(1)1、前言1.1 什么是GDB1.2 为什么要学习GDB1.3 主要内容1.4 GDB资料 2、C/C开发调试环境准备3、gdb启动调试1.1 启动调试并传入参数1.2 附加到进程1.3 过程执行1.4 退出调试 4…

计算机竞赛 卷积神经网络手写字符识别 - 深度学习

文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…

mysql------做主从复制,读写分离

1.为什么要做主从复制(主从复制的作用) 做数据的热备,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。 架构的扩展。业务量越来越大,I/O访问频率过高,单机无法满…

前端网络相关知识(TCP和UDP的区别, TCP的三次握手)

tcp和udp的区别 TCP(传输控制协议)和UDP(用户数据报协议)是两种常用的互联网传输协议。它们在以下几个方面有所不同: 连接性:TCP是面向连接的协议,而UDP是无连接的协议。TCP在通信之前需要建立…

Linux在当前用户安装miniconda,配置并使用conda命令

Miniconda的安装界面可以参考:https://docs.conda.io/en/latest/miniconda.html 比如希望安装python3.8对应的linux版本,则需要运行命令: wget https://repo.anaconda.com/miniconda/Miniconda3-py38_23.5.2-0-Linux-x86_64.sh sh Minicond…

常用的数据存储格式在大数据处理中

说明 ORC(Optimized Row Columnar)和Parquet是两种流行的列式存储文件格式,而LZO是一种用于压缩数据的算法。下面是对这些数据格式和算法的简要说明: ORC(Optimized Row Columnar): 设计目的&…

shell和Python 两种方法分别画 iostat的监控图

在服务器存储的测试中,经常需要看performance的性能曲线,这样最能直接观察HDD或者SSD的性能曲线。 如下这是一个针对HDD跑Fio读写的iostat监控log,下面介绍一下分别用shell 和Python3 写画iostat图的方法 1 shell脚本 环境:linux OS gnuplot工具 第一步 :解析iosta…

DETR-《End-to-End Object Detection with Transformers》论文精读笔记

DETR(基于Transformer架构的目标检测方法开山之作) End-to-End Object Detection with Transformers 参考:跟着李沐学AI-DETR 论文精读【论文精读】 摘要 在摘要部分作者,主要说明了如下几点: DETR是一个端到端&am…

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中,笔者介绍了自己在使用Python测试工具coverge的一点心得,包括: 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…

【Android】设置-显示-屏保-启用时机-去除插入基座相关(不支持该功能的话)

设置-显示-屏保-启用时机-去除插入基座相关(不支持该功能的话) 1-项目场景:2-问题描述3-解决方案:4-代码修改前后效果对比图:代码修改前:代码修改后: 1-项目场景: 展锐平台 2-问题描…

ctfshow-web12

0x00 前言 CTF 加解密合集CTF Web合集 0x01 题目 0x02 Write Up 国际惯例看一下返回包,是不是有注释 然后做一下测试,看是命令执行还是代码执行 通过phpinfo看到可以执行代码 然后尝试执行命令,无法,发现存在disable_function…

optee读取Arm系统寄存器的模板

先写一个通用的内联函数模板,然后再通过宏控来定义各种读写函数。 (core/arch/arm/include/arm64.h)/** Templates for register read/write functions based on mrs/msr*/#define DEFINE_REG_READ_FUNC_(reg, type, asmreg) \ sta