计算机竞赛 卷积神经网络手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 卷积神经网络手写字符识别 - 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于毕业设计。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-"""@author: 丹成学长 Q746876041"""#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),"biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),"biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),"biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),"biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)train_batch_size = 50def optimize(num_iterations):total_iterations=0start_time = time.time()for i in range(total_iterations,total_iterations+num_iterations):x_batch,y_true_batch = data.train.next_batch(train_batch_size)feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}sess.run(optimizer,feed_dict=feed_dict_train_op)# Print status every 100 iterations.if i%100==0:# Calculate the accuracy on the training-set.acc = sess.run(accuracy,feed_dict=feed_dict_train)# Message for printing.msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"# Print it.print(msg.format(i+1,acc))# Update the total number of iterations performedtotal_iterations += num_iterations# Ending timeend_time = time.time()# Difference between start and end_times.time_dif = end_time-start_time# Print the time-usageprint("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))test_batch_size = 256def print_test_accuracy():# Number of images in the test-set.num_test = len(data.test.images)cls_pred = np.zeros(shape=num_test,dtype=np.int)i = 0while i < num_test:# The ending index for the next batch is denoted j.j = min(i+test_batch_size,num_test)# Get the images from the test-set between index i and jimages = data.test.images[i:j, :]# Get the associated labelslabels = data.test.labels[i:j, :]# Create a feed-dict with these images and labels.feed_dict={x:images,y_true:labels,keep_prob:1.0}# Calculate the predicted class using Tensorflow.cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)# Set the start-index for the next batch to the# end-index of the current batchi = jcls_true = data.test.clscorrect = (cls_true==cls_pred)correct_sum = correct.sum()acc = float(correct_sum) / num_test# Print the accuracymsg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"print(msg.format(acc,correct_sum,num_test))# Performance after 10000 optimization iterationsoptimize(num_iterations=10000)print_test_accuracy()savew_hl1 = layer_conv1["weights"].eval()saveb_hl1 = layer_conv1["biases"].eval()savew_hl2 = layer_conv2["weights"].eval()saveb_hl2 = layer_conv2["biases"].eval()savew_fc1 = fc1_layer["weights"].eval()saveb_fc1 = fc1_layer["biases"].eval()savew_op = fc2_layer["weights"].eval()saveb_op = fc2_layer["biases"].eval()np.save("savew_hl1.npy", savew_hl1)np.save("saveb_hl1.npy", saveb_hl1)np.save("savew_hl2.npy", savew_hl2)np.save("saveb_hl2.npy", saveb_hl2)np.save("savew_hl3.npy", savew_fc1)np.save("saveb_hl3.npy", saveb_fc1)np.save("savew_op.npy", savew_op)np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49608.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql------做主从复制,读写分离

1.为什么要做主从复制&#xff08;主从复制的作用&#xff09; 做数据的热备&#xff0c;作为后备数据库&#xff0c;主数据库服务器故障后&#xff0c;可切换到从数据库继续工作&#xff0c;避免数据丢失。 架构的扩展。业务量越来越大,I/O访问频率过高&#xff0c;单机无法满…

shell和Python 两种方法分别画 iostat的监控图

在服务器存储的测试中,经常需要看performance的性能曲线&#xff0c;这样最能直接观察HDD或者SSD的性能曲线。 如下这是一个针对HDD跑Fio读写的iostat监控log,下面介绍一下分别用shell 和Python3 写画iostat图的方法 1 shell脚本 环境:linux OS gnuplot工具 第一步 :解析iosta…

DETR-《End-to-End Object Detection with Transformers》论文精读笔记

DETR&#xff08;基于Transformer架构的目标检测方法开山之作&#xff09; End-to-End Object Detection with Transformers 参考&#xff1a;跟着李沐学AI-DETR 论文精读【论文精读】 摘要 在摘要部分作者&#xff0c;主要说明了如下几点&#xff1a; DETR是一个端到端&am…

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中&#xff0c;笔者介绍了自己在使用Python测试工具coverge的一点心得&#xff0c;包括&#xff1a; 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…

【Android】设置-显示-屏保-启用时机-去除插入基座相关(不支持该功能的话)

设置-显示-屏保-启用时机-去除插入基座相关&#xff08;不支持该功能的话&#xff09; 1-项目场景&#xff1a;2-问题描述3-解决方案&#xff1a;4-代码修改前后效果对比图&#xff1a;代码修改前&#xff1a;代码修改后&#xff1a; 1-项目场景&#xff1a; 展锐平台 2-问题描…

ctfshow-web12

0x00 前言 CTF 加解密合集CTF Web合集 0x01 题目 0x02 Write Up 国际惯例看一下返回包&#xff0c;是不是有注释 然后做一下测试&#xff0c;看是命令执行还是代码执行 通过phpinfo看到可以执行代码 然后尝试执行命令&#xff0c;无法&#xff0c;发现存在disable_function…

基于nginx禁用访问ip

一、背景 网络安全防护时&#xff0c;禁用部分访问ip,基于nginx可快速简单实现禁用。 二、操作 1、创建 conf.d文件夹 在nginx conf 目录下创建conf.d文件夹 Nginx 扩展配置文件一般在conf.d mkdir conf.d 2、新建blocksip.conf文件 在conf.d目录新建禁用ip的扩展配置文…

从头到尾说一次 Spring 事务管理(器) | 京东云技术团队

事务管理&#xff0c;一个被说烂的也被看烂的话题&#xff0c;还是八股文中的基础股之一。​ 本文会从设计角度&#xff0c;一步步的剖析 Spring 事务管理的设计思路&#xff08;都会设计事务管理器了&#xff0c;还能玩不转&#xff1f;&#xff09; 为什么需要事务管理&…

C++基础Ⅰ编译、链接

目录儿 1 C是如何工作的1.1 预处理语句1.2 include1.3 main()1.4 编译单独编译项目编译 1.5 链接 2 定义和调用函数3 编译器如何工作3.1 编译3.1.1 引入头文件系统头文件自定义头文件 3.1.2 自定义类型3.1.3 条件判断拓展: 汇编 3.2 链接3.2.1 起始函数3.2.2 被调用的函数 3.3 …

无人机精细化巡检方案制定:提高效率与准确性的关键

在当前技术日新月异的时代&#xff0c;无人机在多个领域的应用已成为行业标配。但如何制定出一套有效、细致的无人机巡检方案&#xff0c;确保其最大效能&#xff0c;成为许多组织与公司的核心议题。其中&#xff0c;复亚智能在此领域已展现出了卓越的实力与深入的见解。 1. 精…

把matlab的m文件打包成单独的可执行文件

安装Matlab Compiler Adds-on在app里找到Application Compiler 选择要打包的文件matlab单独的运行程序的话需要把依赖的库做成runtime. 这里有两个选项. 上面那个是需要对方在联网的情况下安装, 安装包较小.下面那个是直接把runtime打包成安装程序, 大概由你的程序依赖的库的多…

游乐场vr设备虚拟游乐园vr项目沉浸体验馆

在景区建设一个VR游乐场项目可以为游客提供一种新颖、刺激和沉浸式的游乐体验。提高游客的体验类型&#xff0c;以及景区的类目&#xff0c;从而可以吸引更多的人来体验。 1、市场调研&#xff1a;在决定建设VR游乐场项目之前&#xff0c;需要进行市场调研&#xff0c;了解当地…

DNQ算法原理(Deep Q Network)

1.强化学习概念 学习系统没有像很多其它形式的机器学习方法一样被告知应该做出什么行为 必须在尝试了之后才能发现哪些行为会导致奖励的最大化 当前的行为可能不仅仅会影响即时奖励&#xff0c;还会影响下一步的奖励以及后续的所有奖励 每一个动作(action)都能影响代理将来的…

linux 上安装es

首先 到官网 https://www.elastic.co/cn/downloads/elasticsearch 下载对应的安装包&#xff0c;我这里下载的是 https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.9.1-linux-x86_64.tar.gz 然后讲该压缩包上传到 linux 的/usr/local 目录下执行 tar -z…

Just KNIME it[S2C21] 图像识别

朋友们&#xff0c;Just KNIME it 还有在跟进吗? 本季已经到 21 期啦。 本期探讨的主题是图像识别问题&#xff0c;快随指北君一起看看吧。 挑战 21&#xff1a;帮助球童&#xff08;第 1 部分&#xff09; 级别&#xff1a;中 描述&#xff1a;球童汤姆是一位最受欢迎的高尔夫…

Ansible学习笔记(一)

1.什么是Ansible 官方网站&#xff1a;https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html Ansible是一个配置管理和配置工具&#xff0c;类似于Chef&#xff0c;Puppet或Salt。这是一款很简单也很容易入门的部署工具&#xff0c;它使用SS…

Linux解决RocketMQ中NameServer启动问题

启动步骤可以查看官网&#xff0c;https://github.com/apache/rocketmq 一下说明遇到的问题。 1&#xff1a;ROCKETMQ_HOME问题 根据官网提示进入mq/bin目录下&#xff0c;可以使用./mqnamesrv进行NameServer启动&#xff0c;但是会遇到第一个问题&#xff0c;首次下载Rocket…

机器学习---常见的距离公式(欧氏距离、曼哈顿距离、标准化欧式距离、余弦距离、杰卡德距离、马氏距离、切比雪夫距离、闵可夫斯基距离、K-L散度)

1. 欧氏距离 欧几里得度量&#xff08;euclidean metric&#xff09;&#xff08;也称欧氏距离&#xff09;是一个通常采用的距离定义&#xff0c;指在m维空 间中两个点之间的真实距离&#xff0c;或者向量的自然长度&#xff08;即该点到原点的距离&#xff09;。在二维和三维…

一文读懂数据云的「对象体系」

确切地说&#xff0c;有6个域、32个对象 啥是「对象」&#xff1f; 在计算机科学的定义中 对象&#xff08;Object&#xff09;是面向对象编程的基本单位 是一种将数据和操作封装在一起的实体 它具有「属性」和「行为」 可以与其他对象进行交互和通信 对象最突出的特征 莫…

【业务功能篇78】微服务-前端后端校验- 统一异常处理-JSR-303-validation注解

5. 前端校验 我们在前端提交的表单数据&#xff0c;我们也是需要对提交的数据做相关的校验的 Form 组件提供了表单验证的功能&#xff0c;只需要通过 rules 属性传入约定的验证规则&#xff0c;并将 Form-Item 的 prop 属性设置为需校验的字段名即可 校验的页面效果 前端数据…