一.总体结构
由于rnn等循环神经网络有时序依赖,导致无法并行计算,而Transformer主体框架是一个encoder-decoder结构,去掉了RNN序列结构,完全基于attention和全连接。同时为了弥补词与词之间时序信息,将词位置embedding成向量输入模型.
二.每一步拆分
1.padding mask
对于输入序列一般我们都要进行padding补齐,也就是说设定一个统一长度N,在较短的序列后面填充0到长度为N。对于那些补零的数据来说,我们的attention机制不应该把注意力放在这些位置上,所以我们需要进行一些处理。具体的做法是,把这些位置的值加上一个非常大的负数(负无穷),这样经过softmax后,这些位置的权重就会接近0。Transformer的padding mask实际上是一个张量,每个值都是一个Boolean,值为false的地方就是要进行处理的地方。
def padding_mask(seq_k, seq_q):len_q = seq_q.size(1)print('=len_q:', len_q)# `PAD` is 0pad_mask_ = seq_k.eq(0)#每句话的pad maskprint('==pad_mask_:', pad_mask_)pad_mask = pad_mask_.unsqueeze(1).expand(-1, len_q, -1) # shape [B, L_q, L_k]#作用于attention的maskprint('==pad_mask', pad_mask)return pad_maskdef debug_padding_mask():Bs = 2inputs_len = np.random.randint(1, 5, Bs).reshape(Bs, 1)print('==inputs_len:', inputs_len)vocab_size = 6000 # 词汇数max_seq_len = int(max(inputs_len))# vocab_size = int(max(inputs_len))x = np.zeros((Bs, max_seq_len), dtype=np.int)for s in range(Bs):for j in range(inputs_len[s][0]):x[s][j] = j + 1x = torch.LongTensor(torch.from_numpy(x))print('x.shape', x.shape)mask = padding_mask(seq_k=x, seq_q=x)print('==mask:', mask.shape)if __name__ == '__main__':debug_padding_mask()
2.Position encoding
其也叫做Position embedding,由于Transformer模型没有使用RNN,故Position encoding(PE)的目的就是实现文本序列的顺序(或者说位置)信息而出现的。
代码实现如下:输入batch内的词位置,输出是batch内的每个词的位置embedding向量.
class PositionalEncoding(nn.Module):def __init__(self, d_model, max_seq_len):"""初始化Args:d_model: 一个标量。模型的维度,论文默认是512max_seq_len: 一个标量。文本序列的最大长度"""super(PositionalEncoding, self).__init__()# 根据论文给的公式,构造出PE矩阵position_encoding = np.array([[pos / np.power(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)]for pos in range(max_seq_len)]).astype(np.float32)# 偶数列使用sin,奇数列使用cosposition_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2])position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2])# 在PE矩阵的第一行,加上一行全是0的向量,代表这`PAD`的positional encoding# 在word embedding中也经常会加上`UNK`,代表位置单词的word embedding,两者十分类似# 那么为什么需要这个额外的PAD的编码呢?很简单,因为文本序列的长度不一,我们需要对齐,# 短的序列我们使用0在结尾补全,我们也需要这些补全位置的编码,也就是`PAD`对应的位置编码position_encoding = torch.from_numpy(position_encoding) # [max_seq_len, model_dim]# print('==position_encoding.shape:', position_encoding.shape)pad_row = torch.zeros([1, d_model])position_encoding = torch.cat((pad_row, position_encoding)) # [max_seq_len+1, model_dim]# print('==position_encoding.shape:', position_encoding.shape)# 嵌入操作,+1是因为增加了`PAD`这个补全位置的编码,# Word embedding中如果词典增加`UNK`,我们也需要+1。看吧,两者十分相似self.position_encoding = nn.Embedding(max_seq_len + 1, d_model)self.position_encoding.weight = nn.Parameter(position_encoding,requires_grad=False)def forward(self, input_len):"""神经网络的前向传播。Args:input_len: 一个张量,形状为[BATCH_SIZE, 1]。每一个张量的值代表这一批文本序列中对应的长度。Returns:返回这一批序列的位置编码,进行了对齐。"""# 找出这一批序列的最大长度max_len = torch.max(input_len)tensor = torch.cuda.LongTensor if input_len.is_cuda else torch.LongTensor# 对每一个序列的位置进行对齐,在原序列位置的后面补上0# 这里range从1开始也是因为要避开PAD(0)的位置input_pos = tensor([list(range(1, len + 1)) + [0] * (max_len - len) for len in input_len])# print('==input_pos:', input_pos)#pad补齐# print('==input_pos.shape:', input_pos.shape)#[bs, max_len]return self.position_encoding(input_pos)def debug_posion():"""d_model:模型的维度"""bs = 16x_sclar = np.random.randint(1, 30, bs).reshape(bs, 1)model = PositionalEncoding(d_model=512, max_seq_len=int(max(x_sclar)))x = torch.from_numpy(x_sclar)#[bs, 1]print('===x:', x)print('====x.shape', x.shape)out = model(x)print('==out.shape:', out.shape)#[bs, max_seq_len, model_dim]
if __name__ == '__main__':debug_posion()
3.Scaled dot-product attention实现
Q,K,V:可看成一个batch内词的三个embedding向量和矩阵相乘得到的,而这个矩阵就是需要学习的,通过Q,K获取attention score作用于V上获取加权的V.这样一句话的不同词就获取了不同关注度.注意,Q,K,V这 3 个向量一般比原来的词向量的长度更小。假设这 3 个向量的长度是64 ,而原始的词向量或者最终输出的向量的长度是 512(Q,K,V这 3 个向量的长度,和最终输出的向量长度,是有倍数关系的)
上图中,有两个词向量:Thinking 的词向量 x1 和 Machines 的词向量 x2。以 x1 为例,X1 乘以 WQ 得到 q1,q1 就是 X1 对应的 Query 向量。同理,X1 乘以 WK 得到 k1,k1 是 X1 对应的 Key 向量;X1 乘以 WV 得到 v1,v1 是 X1 对应的 Value 向量。
对应代码实现:
class ScaledDotProductAttention(nn.Module):"""Scaled dot-product attention mechanism."""def __init__(self, attention_dropout=0.5):super(ScaledDotProductAttention, self).__init__()self.dropout = nn.Dropout(attention_dropout)self.softmax = nn.Softmax(dim=2)def forward(self, q, k, v, scale=None, attn_mask=None):"""前向传播.Args:q: Queries张量,形状为[B, L_q, D_q]k: Keys张量,形状为[B, L_k, D_k]v: Values张量,形状为[B, L_v, D_v],一般来说就是kscale: 缩放因子,一个浮点标量attn_mask: Masking张量,形状为[B, L_q, L_k]Returns:上下文张量和attetention张量"""attention = torch.bmm(q, k.transpose(1, 2)) # [B, sequence, sequence]print('===attention.shape', attention)if scale:attention = attention * scaleif attn_mask is not None:# 给需要mask的地方设置一个负无穷attention = attention.masked_fill_(attn_mask, -np.inf)print('===attention.shape', attention)attention = self.softmax(attention) # [B, sequence, sequence]# print('===attention.shape', attention.shape)attention = self.dropout(attention) # [B, sequence, sequence]# print('===attention.shape', attention.shape)context = torch.bmm(attention, v) # [B, sequence, dim]return context, attentiondef debug_scale_attention():model = ScaledDotProductAttention()# B, L_q, D_q = 32, 100, 128B, L_q, D_q = 2, 4, 10pading_mask = torch.tensor([[[False, False, False, False],[False, False, False, False],[False, False, False, False],[False, False, False, False]],[[False, False, True, True],[False, False, True, True],[False, False, True, True],[False, False, True, True]]])q, k, v = torch.rand(B, L_q, D_q), torch.rand(B, L_q, D_q), torch.rand(B, L_q, D_q)print('==q.shape:', q.shape)print('====k.shape', k.shape)print('==v.shape:', v.shape)out = model(q, k, v, attn_mask=pading_mask)
if __name__ == '__main__':debug_scale_attention()
注意q和k,v维度可以不一样
import torch.nn as nn
d_model = 256
nhead = 8
multihead_attn1 = nn.MultiheadAttention(d_model, nhead, dropout=0.1)
src1 = torch.rand((256, 1, 256))
src2 = torch.rand((1024, 1, 256))
src2_key_padding_mask = torch.zeros((1, 1024))
src12 = multihead_attn1(query=src1,key=src2,value=src2, attn_mask=None,key_padding_mask=src2_key_padding_mask)[0]print('=src12.shape:', src12.shape)key_padding_mask = torch.zeros((1, 1024))
num_heads = 8
q = torch.rand((256, 1, 256))
tgt_len, bsz, embed_dim = q.size()
head_dim = embed_dim // num_heads
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
print('==q.shape:', q.shape)
k = torch.rand((1024, 1, 256))
v = torch.rand((1024, 1, 256))
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
src_len = k.size(1)
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
print('==k.shape:', k.shape)
print('==v.shape:', v.shape)
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
print('==attn_output_weights.shape:', attn_output_weights.shape)
if key_padding_mask is not None:attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)attn_output_weights = attn_output_weights.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2),float('-inf'),)attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = F.softmax(attn_output_weights, dim=-1)
print('==attn_output_weights.shape:', attn_output_weights.shape)
attn_output = torch.bmm(attn_output_weights, v)
print('==attn_output.shape:', attn_output.shape)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
print('==attn_output.shape:', attn_output.shape)
4.Multi-Head Attention
其中H就是Multi-Head,可看出首先对Q,K,V进行一次线性变换,然后进行切分,对每一个切分的部分进行attention(Scaled dot-product attention),然后最后将结果进行合并.有一种类似通道加权的感觉.
对应代码实现:
class MultiHeadAttention(nn.Module):def __init__(self, model_dim=512, num_heads=8, dropout=0.0):"""model_dim:词向量维度num_heads:头个数"""super(MultiHeadAttention, self).__init__()self.dim_per_head = model_dim // num_heads#split个数也就是每个head要处理维度self.num_heads = num_headsself.linear_k = nn.Linear(model_dim, self.dim_per_head * num_heads)self.linear_v = nn.Linear(model_dim, self.dim_per_head * num_heads)self.linear_q = nn.Linear(model_dim, self.dim_per_head * num_heads)self.dot_product_attention = ScaledDotProductAttention(dropout)self.linear_final = nn.Linear(model_dim, model_dim)self.dropout = nn.Dropout(dropout)self.layer_norm = nn.LayerNorm(model_dim)def forward(self, key, value, query, attn_mask=None):residual = query# [B, sequence, model_dim]dim_per_head = self.dim_per_headnum_heads = self.num_headsbatch_size = key.size(0)# linear projectionkey = self.linear_k(key)# [B, sequence, model_dim]value = self.linear_v(value)# [B, sequence, model_dim]query = self.linear_q(query)# [B, sequence, model_dim]# print('===key.shape:', key.shape)# print('===value.shape:', value.shape)# print('==query.shape:', query.shape)# split by headskey = key.view(batch_size * num_heads, -1, dim_per_head)# [B* num_heads, sequence, model_dim//*num_heads]value = value.view(batch_size * num_heads, -1, dim_per_head)# [B* num_heads, sequence, model_dim//*num_heads]query = query.view(batch_size * num_heads, -1, dim_per_head)# [B* num_heads, sequence, model_dim//*num_heads]# print('===key.shape:', key.shape)# print('===value.shape:', value.shape)# print('==query.shape:', query.shape)if attn_mask:attn_mask = attn_mask.repeat(num_heads, 1, 1)# scaled dot product attentionscale = (key.size(-1) // num_heads) ** -0.5context, attention = self.dot_product_attention(query, key, value, scale, attn_mask)# print('===context.shape', context.shape)# [B* num_heads, sequence, model_dim//*num_heads]# print('===attention.shape', attention.shape)# [B* num_heads, sequence, sequence]# concat headscontext = context.view(batch_size, -1, dim_per_head * num_heads)# [B, sequence, model_dim]# print('===context.shape', context.shape)# final linear projectionoutput = self.linear_final(context)# [B, sequence, model_dim]# print('===context.shape', context.shape)# dropoutoutput = self.dropout(output)# add residual and norm layeroutput = self.layer_norm(residual + output)# [B, sequence, model_dim]# print('==output.shape:', output.shape)return output, attention
def debug_mutil_head_attention():model = MultiHeadAttention()B, L_q, D_q = 32, 100, 512q, k, v = torch.rand(B, L_q, D_q), torch.rand(B, L_q, D_q), torch.rand(B, L_q, D_q)# print('==q.shape:', q.shape)# [B, sequence, model_dim]# print('====k.shape', k.shape)# [B, sequence, model_dim]# print('==v.shape:', v.shape)# [B, sequence, model_dim]out, _ = model(q, k, v)# [B, sequence, model_dim]print('==out.shape:', out.shape)
if __name__ == '__main__':debug_mutil_head_attention()
5.Positional-wise feed forward network(前馈神经网络层)
如上图中画框就是其所在,
代码:
#Position-wise Feed Forward Networks
class PositionalWiseFeedForward(nn.Module):def __init__(self, model_dim=512, ffn_dim=2048, dropout=0.0):"""model_dim:词向量的维度ffn_dim:卷积输出的维度"""super(PositionalWiseFeedForward, self).__init__()self.w1 = nn.Conv1d(model_dim, ffn_dim, 1)self.w2 = nn.Conv1d(ffn_dim, model_dim, 1)self.dropout = nn.Dropout(dropout)self.layer_norm = nn.LayerNorm(model_dim)def forward(self, x):#[B, sequence, model_dim]output = x.transpose(1, 2)#[B, model_dim, sequence]# print('===output.shape:', output.shape)output = self.w2(F.relu(self.w1(output)))#[B, model_dim, sequence]output = self.dropout(output.transpose(1, 2))#[B, sequence, model_dim]# add residual and norm layeroutput = self.layer_norm(x + output)return outputdef debug_PositionalWiseFeedForward():B, L_q, D_q = 32, 100, 512x = torch.rand(B, L_q, D_q)model = PositionalWiseFeedForward()out = model(x)print('==out.shape:', out.shape)
if __name__ == '__main__':debug_PositionalWiseFeedForward()
6.encoder实现
其共有6层4,5的结构,可看出q k v 均来自同一文本.
def sequence_mask(seq):batch_size, seq_len = seq.size()mask = torch.triu(torch.ones((seq_len, seq_len), dtype=torch.uint8),diagonal=1)mask = mask.unsqueeze(0).expand(batch_size, -1, -1) # [B, L, L]return maskdef padding_mask(seq_k, seq_q):len_q = seq_q.size(1)# `PAD` is 0pad_mask = seq_k.eq(0)pad_mask = pad_mask.unsqueeze(1).expand(-1, len_q, -1) # shape [B, L_q, L_k]return pad_maskclass EncoderLayer(nn.Module):"""一个encode的layer实现"""def __init__(self, model_dim=512, num_heads=8, ffn_dim=2018, dropout=0.0):super(EncoderLayer, self).__init__()self.attention = MultiHeadAttention(model_dim, num_heads, dropout)self.feed_forward = PositionalWiseFeedForward(model_dim, ffn_dim, dropout)def forward(self, inputs, attn_mask=None):# self attention# [B, sequence, model_dim] [B* num_heads, sequence, sequence]context, attention = self.attention(inputs, inputs, inputs, attn_mask)# feed forward networkoutput = self.feed_forward(context) # [B, sequence, model_dim]return output, attentionclass Encoder(nn.Module):"""编码器实现 总共6层"""def __init__(self,vocab_size,max_seq_len,num_layers=6,model_dim=512,num_heads=8,ffn_dim=2048,dropout=0.0):super(Encoder, self).__init__()self.encoder_layers = nn.ModuleList([EncoderLayer(model_dim, num_heads, ffn_dim, dropout) for _ in range(num_layers)])self.seq_embedding = nn.Embedding(vocab_size + 1, model_dim, padding_idx=0)self.pos_embedding = PositionalEncoding(model_dim, max_seq_len)# [bs, max_seq_len] [bs, 1]def forward(self, inputs, inputs_len):output = self.seq_embedding(inputs) # [bs, max_seq_len, model_dim]print('========output.shape', output.shape)# 加入位置信息embeddingoutput += self.pos_embedding(inputs_len) # [bs, max_seq_len, model_dim]print('========output.shape', output.shape)self_attention_mask = padding_mask(inputs, inputs)attentions = []for encoder in self.encoder_layers:output, attention = encoder(output, attn_mask=None)# output, attention = encoder(output, self_attention_mask)attentions.append(attention)return output, attentionsdef debug_encoder():Bs = 16inputs_len = np.random.randint(1, 30, Bs).reshape(Bs, 1)# print('==inputs_len:', inputs_len) # 模拟获取每个词的长度vocab_size = 6000 # 词汇数max_seq_len = int(max(inputs_len))# vocab_size = int(max(inputs_len))x = np.zeros((Bs, max_seq_len), dtype=np.int)for s in range(Bs):for j in range(inputs_len[s][0]):x[s][j] = j+1x = torch.LongTensor(torch.from_numpy(x))inputs_len = torch.from_numpy(inputs_len)#[Bs, 1]model = Encoder(vocab_size=vocab_size, max_seq_len=max_seq_len)# x = torch.LongTensor([list(range(1, max_seq_len + 1)) for _ in range(Bs)])#模拟每个单词print('==x.shape:', x.shape)print(x)model(x, inputs_len=inputs_len)if __name__ == '__main__':debug_encoder()
7.Sequence Mask
样本:“我/爱/机器/学习”和 "i/ love /machine/ learning"
训练:
7.1. 把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
7.2. 将<bos>作为decoder的初始输入,将decoder的最大概率输出词 A1和‘i’做cross entropy计算error。
7.3. 将<bos>,"i" 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
7.4. 将<bos>,"i","love" 作为decoder的输入,将decoder的最大概率输出词A3和'machine' 做cross entropy计算error。
7.5. 将<bos>,"i","love ","machine" 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
7.6. 将<bos>,"i","love ","machine","learning" 作为decoder的输入,将decoder最大概率输出词A5和终止符</s>做cross entropy计算error。
可看出上述训练过程是挨个单词串行进行的,故引入sequence mask,用于并行训练.
作用生成
8.decoder实现
也是循环6层,可以看出decoder的soft-attention,q来自于decoder,k和v来自于encoder。它体现的是encoder对decoder的加权贡献。
class DecoderLayer(nn.Module):"""解码器的layer实现"""def __init__(self, model_dim, num_heads=8, ffn_dim=2048, dropout=0.0):super(DecoderLayer, self).__init__()self.attention = MultiHeadAttention(model_dim, num_heads, dropout)self.feed_forward = PositionalWiseFeedForward(model_dim, ffn_dim, dropout)# [B, sequence, model_dim] [B, sequence, model_dim]def forward(self,dec_inputs,enc_outputs,self_attn_mask=None,context_attn_mask=None):# self attention, all inputs are decoder inputs# [B, sequence, model_dim] [B* num_heads, sequence, sequence]dec_output, self_attention = self.attention(key=dec_inputs, value=dec_inputs, query=dec_inputs, attn_mask=self_attn_mask)# context attention# query is decoder's outputs, key and value are encoder's inputs# [B, sequence, model_dim] [B* num_heads, sequence, sequence]dec_output, context_attention = self.attention(key=enc_outputs, value=enc_outputs, query=dec_output, attn_mask=context_attn_mask)# decoder's output, or contextdec_output = self.feed_forward(dec_output) # [B, sequence, model_dim]return dec_output, self_attention, context_attentionclass Decoder(nn.Module):"""解码器"""def __init__(self,vocab_size,max_seq_len,num_layers=6,model_dim=512,num_heads=8,ffn_dim=2048,dropout=0.0):super(Decoder, self).__init__()self.num_layers = num_layersself.decoder_layers = nn.ModuleList([DecoderLayer(model_dim, num_heads, ffn_dim, dropout) for _ inrange(num_layers)])self.seq_embedding = nn.Embedding(vocab_size + 1, model_dim, padding_idx=0)self.pos_embedding = PositionalEncoding(model_dim, max_seq_len)def forward(self, inputs, inputs_len, enc_output, context_attn_mask=None):output = self.seq_embedding(inputs)output += self.pos_embedding(inputs_len)print('==output.shape:', output.shape)self_attention_padding_mask = padding_mask(inputs, inputs)seq_mask = sequence_mask(inputs)self_attn_mask = torch.gt((self_attention_padding_mask + seq_mask), 0)self_attentions = []context_attentions = []for decoder in self.decoder_layers:# [B, sequence, model_dim] [B* num_heads, sequence, sequence] [B* num_heads, sequence, sequence]output, self_attn, context_attn = decoder(output, enc_output, self_attn_mask=None, context_attn_mask=None)self_attentions.append(self_attn)context_attentions.append(context_attn)return output, self_attentions, context_attentionsdef debug_decoder():Bs = 2model_dim = 512vocab_size = 6000 #词汇数inputs_len = np.random.randint(1, 5, Bs).reshape(Bs, 1)#batch里每句话的单词个数inputs_len = torch.from_numpy(inputs_len) # [Bs, 1]max_seq_len = int(max(inputs_len))x = np.zeros((Bs, max_seq_len), dtype=np.int)for s in range(Bs):for j in range(inputs_len[s][0]):x[s][j] = j + 1x = torch.LongTensor(torch.from_numpy(x))#模拟每个单词# x = torch.LongTensor([list(range(1, max_seq_len + 1)) for _ in range(Bs)])print('==x:', x)print('==x.shape:', x.shape)model = Decoder(vocab_size=vocab_size, max_seq_len=max_seq_len, model_dim=model_dim)enc_output = torch.rand(Bs, max_seq_len, model_dim) #[B, sequence, model_dim]print('==enc_output.shape:', enc_output.shape)out, self_attentions, context_attentions = model(inputs=x, inputs_len=inputs_len, enc_output=enc_output)print('==out.shape:', out.shape)#[B, sequence, model_dim]print('==len(self_attentions):', len(self_attentions), self_attentions[0].shape)print('==len(context_attentions):', len(context_attentions), context_attentions[0].shape)if __name__ == '__main__':debug_decoder()
9.transformer
将encoder和decoder组合起来即可.
class Transformer(nn.Module):def __init__(self,src_vocab_size,src_max_len,tgt_vocab_size,tgt_max_len,num_layers=6,model_dim=512,num_heads=8,ffn_dim=2048,dropout=0.2):super(Transformer, self).__init__()self.encoder = Encoder(src_vocab_size, src_max_len, num_layers, model_dim,num_heads, ffn_dim, dropout)self.decoder = Decoder(tgt_vocab_size, tgt_max_len, num_layers, model_dim,num_heads, ffn_dim, dropout)self.linear = nn.Linear(model_dim, tgt_vocab_size, bias=False)self.softmax = nn.Softmax(dim=2)def forward(self, src_seq, src_len, tgt_seq, tgt_len):context_attn_mask = padding_mask(tgt_seq, src_seq)print('==context_attn_mask.shape', context_attn_mask.shape)output, enc_self_attn = self.encoder(src_seq, src_len)output, dec_self_attn, ctx_attn = self.decoder(tgt_seq, tgt_len, output, context_attn_mask)output = self.linear(output)output = self.softmax(output)return output, enc_self_attn, dec_self_attn, ctx_attn
def debug_transoform():Bs = 4#需要翻译的encode_inputs_len = np.random.randint(1, 10, Bs).reshape(Bs, 1)src_vocab_size = 6000 # 词汇数encode_max_seq_len = int(max(encode_inputs_len))encode_x = np.zeros((Bs, encode_max_seq_len), dtype=np.int)for s in range(Bs):for j in range(encode_inputs_len[s][0]):encode_x[s][j] = j + 1encode_x = torch.LongTensor(torch.from_numpy(encode_x))#翻译的结果decode_inputs_len = np.random.randint(1, 10, Bs).reshape(Bs, 1)target_vocab_size = 5000 # 词汇数decode_max_seq_len = int(max(decode_inputs_len))decode_x = np.zeros((Bs, decode_max_seq_len), dtype=np.int)for s in range(Bs):for j in range(decode_inputs_len[s][0]):decode_x[s][j] = j + 1decode_x = torch.LongTensor(torch.from_numpy(decode_x))encode_inputs_len = torch.from_numpy(encode_inputs_len) # [Bs, 1]decode_inputs_len = torch.from_numpy(decode_inputs_len) # [Bs, 1]model = Transformer(src_vocab_size=src_vocab_size, src_max_len=encode_max_seq_len, tgt_vocab_size=target_vocab_size, tgt_max_len=decode_max_seq_len)# x = torch.LongTensor([list(range(1, max_seq_len + 1)) for _ in range(Bs)])#模拟每个单词print('==encode_x.shape:', encode_x.shape)print('==decode_x.shape:', decode_x.shape)model(encode_x, encode_inputs_len, decode_x, decode_inputs_len)
if __name__ == '__main__':debug_transoform()
10.总结
(1):相比lstm而言,其能够实现并行,而lstm由于依赖上一时刻只能串行输出;
(2):利用self-attention将每个词之间距离缩短为1,大大缓解了长距离依赖问题,所以网络相比lstm能够堆叠得更深;
(3):Transformer可以同时融合前后位置的信息,而双向LSTM只是简单的将两个方向的结果相加,严格来说仍然是单向的;
(4):完全基于attention的Transformer,可以表达字与字之间的相关关系,可解释性更强;
(5):Transformer位置信息只能依靠position encoding,故当语句较短时效果不一定比lstm好;
(6):attention计算量为O(n^2), n为文本长度,计算量较大;
(7):相比CNN能够捕获全局的信息,而不是局部信息,所以CNN缺乏对数据的整体把握。
三.CV中的self-attention
介绍完了nlp的self-attention,现在介绍CV中的,如下图所示。
1.feature map通过1*1卷积获得,q,k,v三个向量,q与k转置相乘得到attention矩阵,进行softmax归一化到0到1,在作用于V,得到每个像素的加权.
2.softmax
3,加权求和
import torch
import torch.nn as nn
import torch.nn.functional as Fclass Self_Attn(nn.Module):""" Self attention Layer"""def __init__(self, in_dim):super(Self_Attn, self).__init__()self.chanel_in = in_dimself.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)self.gamma = nn.Parameter(torch.zeros(1))self.softmax = nn.Softmax(dim=-1)def forward(self, x):"""inputs :x : input feature maps( B * C * W * H)returns :out : self attention value + input featureattention: B * N * N (N is Width*Height)"""m_batchsize, C, width, height = x.size()proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B*N*Cproj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B*C*Nenergy = torch.bmm(proj_query, proj_key) # batch的matmul B*N*Nattention = self.softmax(energy) # B * (N) * (N)proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B * C * Nout = torch.bmm(proj_value, attention.permute(0, 2, 1)) # B*C*Nout = out.view(m_batchsize, C, width, height) # B*C*H*Wout = self.gamma * out + xreturn out, attentiondef debug_attention():attention_module = Self_Attn(in_dim=128)#B,C,H,Wx = torch.rand((2, 128, 100, 100))attention_module(x)if __name__ == '__main__':debug_attention()
参考:
举个例子讲下transformer的输入输出细节及其他 - 知乎
The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.
machine-learning-notes/transformer_pytorch.ipynb at master · luozhouyang/machine-learning-notes · GitHub