seaborn的一些画图

一.数据查看

数据集地址,用红白酒为例.

import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
import numpy as np
import seaborn as snswhite_wine = pd.read_csv('winequality-white.csv', sep=';')
red_wine = pd.read_csv('winequality-red.csv', sep=';')# store wine type as an attribute
red_wine['wine_type'] = 'red'
white_wine['wine_type'] = 'white'# bucket wine quality scores into qualitative quality labels
red_wine['quality_label'] = red_wine['quality'].apply(lambda value: 'low'if value <= 5 else 'medium'if value <= 7 else 'high')
red_wine['quality_label'] = pd.Categorical(red_wine['quality_label'],categories=['low', 'medium', 'high'])
white_wine['quality_label'] = white_wine['quality'].apply(lambda value: 'low'if value <= 5 else 'medium'if value <= 7 else 'high')
white_wine['quality_label'] = pd.Categorical(white_wine['quality_label'],categories=['low', 'medium', 'high'])# merge red and white wine datasets
wines = pd.concat([red_wine, white_wine])# print('wines.head()\n', wines.head())
# re-shuffle records just to randomize data points
wines = wines.sample(frac=1, random_state=42).reset_index(drop=True)
print('wines.head()\n', wines.head())subset_attributes = ['residual sugar', 'total sulfur dioxide', 'sulphates','alcohol', 'volatile acidity', 'quality']
rs = round(red_wine[subset_attributes].describe(), 2)
ws = round(white_wine[subset_attributes].describe(), 2)rs_ws = pd.concat([rs, ws], axis=1, keys=['Red Wine Statistics', 'White Wine Statistics'])

二.数据分析

1.每个特性 都做直方图

wines.hist(bins=15, color='steelblue', edgecolor='black', linewidth=1.0,xlabelsize=8, ylabelsize=8, grid=False, figsize=(12.8, 9.6))
# plt.tight_layout(rect=(0, 0, 1.2, 1.2))
plt.savefig('./wines_analysis.jpg')

2.sulphates属性做直方图和核密度估计

fig = plt.figure(figsize=(6, 4))
title = fig.suptitle("Sulphates Content in Wine", fontsize=14)
fig.subplots_adjust(top=0.85, wspace=0.3)ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel("Sulphates")
ax.set_ylabel("Frequency")
ax.text(1.2, 800, r'$\mu$='+str(round(wines['sulphates'].mean(), 2)),fontsize=12)
freq, bins, patches = ax.hist(wines['sulphates'], color='steelblue', bins=15,edgecolor='black', linewidth=1)
plt.savefig('./sulphates_historm_analysis.jpg')# Density Plot
fig = plt.figure(figsize = (6, 4))
title = fig.suptitle("Sulphates Content in Wine", fontsize=14)
fig.subplots_adjust(top=0.85, wspace=0.3)ax1 = fig.add_subplot(1, 1, 1)
ax1.set_xlabel("Sulphates")
ax1.set_ylabel("Frequency")
sns.kdeplot(wines['sulphates'], ax=ax1, shade=True, color='steelblue')
plt.savefig('./sulphates_Density_analysis.jpg')

 3.对属性相关性 进行热力图分析

# Correlation Matrix Heatmap
f, ax = plt.subplots(figsize=(10, 6))
corr = wines.corr()
hm = sns.heatmap(round(corr,2), annot=True, ax=ax, cmap="coolwarm",fmt='.2f',linewidths=.05)
f.subplots_adjust(top=0.93)
t= f.suptitle('Wine Attributes Correlation Heatmap', fontsize=14)
plt.savefig('./Wine_Attributes_Correlation_Heatmap.jpg')

4.seaborn一幅图画两个对比的直方图

# Multi-bar Plot
plt.figure()
cp = sns.countplot(x="quality", hue="wine_type", data=wines,palette={"red": "#FF9999", "white": "#FFE888"})
plt.savefig('./quality_wine_type.jpg')

  

 5. 用箱线图表示质量和浓度关系

f, (ax) = plt.subplots(1, 1, figsize=(12, 4))
f.suptitle('Wine Quality - Alcohol Content', fontsize=14)sns.boxplot(x="quality", y="alcohol", data=wines,  ax=ax)
ax.set_xlabel("Wine Quality", size=12, alpha=0.8)
ax.set_ylabel("Wine Alcohol %", size=12, alpha=0.8)
plt.savefig('./box_quality_Alcohol.jpg')

 

6. 3d view 

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')xs = wines['residual sugar']
ys = wines['fixed acidity']
zs = wines['alcohol']
ax.scatter(xs, ys, zs, s=50, alpha=0.6, edgecolors='w')ax.set_xlabel('Residual Sugar')
ax.set_ylabel('Fixed Acidity')
ax.set_zlabel('Alcohol')
plt.savefig('./3d_view.jpg')

7. 用气泡图2d做3d数据的可视化 

plt.figure()
# Visualizing 3-D numeric data with a bubble chart
# length, breadth and size
plt.scatter(wines['fixed acidity'], wines['alcohol'], s=wines['residual sugar']*25,alpha=0.4, edgecolors='w')plt.xlabel('Fixed Acidity')
plt.ylabel('Alcohol')
plt.title('Wine Alcohol Content - Fixed Acidity - Residual Sugar',y=1.05)
plt.savefig('./2d_bubble_view.jpg')

8.用seaborn按照不同质量去分类画直方图

# Visualizing 3-D categorical data using bar plots
# leveraging the concepts of hue and facets
plt.figure()
fc = sns.factorplot(x="quality", hue="wine_type", col="quality_label",data=wines, kind="count",palette={"red": "#FF9999", "white": "#FFE888"})
plt.savefig('./seaborn_quality_classify.jpg')

9.用seaborn 查看两个变量的核密度图

plt.figure()
ax = sns.kdeplot(white_wine['sulphates'], white_wine['alcohol'],cmap="YlOrBr", shade=True, shade_lowest=False)
ax = sns.kdeplot(red_wine['sulphates'], red_wine['alcohol'],cmap="Reds", shade=True, shade_lowest=False)
plt.savefig('./seaborn_see_density.jpg')

 

10. 可视化四维数据用颜色区分

# Visualizing 4-D mix data using scatter plots
# leveraging the concepts of hue and depth
fig = plt.figure(figsize=(8, 6))
t = fig.suptitle('Wine Residual Sugar - Alcohol Content - Acidity - Type', fontsize=14)
ax = fig.add_subplot(111, projection='3d')xs = list(wines['residual sugar'])
ys = list(wines['alcohol'])
zs = list(wines['fixed acidity'])
data_points = [(x, y, z) for x, y, z in zip(xs, ys, zs)]
colors = ['red' if wt == 'red' else 'yellow' for wt in list(wines['wine_type'])]for data, color in zip(data_points, colors):x, y, z = dataax.scatter(x, y, z, alpha=0.4, c=color, edgecolors='none', s=30)ax.set_xlabel('Residual Sugar')
ax.set_ylabel('Alcohol')
ax.set_zlabel('Fixed Acidity')
plt.savefig('./view_4d_by_3d.jpg')

11.可视化4d数据 只不过用二维图片 加入大小

# Visualizing 4-D mix data using bubble plots
# leveraging the concepts of hue and size
size = wines['residual sugar']*25
fill_colors = ['#FF9999' if wt=='red' else '#FFE888' for wt in list(wines['wine_type'])]
edge_colors = ['red' if wt=='red' else 'orange' for wt in list(wines['wine_type'])]plt.scatter(wines['fixed acidity'], wines['alcohol'], s=size,alpha=0.4, color=fill_colors, edgecolors=edge_colors)plt.xlabel('Fixed Acidity')
plt.ylabel('Alcohol')
plt.title('Wine Alcohol Content - Fixed Acidity - Residual Sugar - Type',y=1.05)
plt.savefig('./view_4d_by_2d.jpg')

 

12. 可视化5d数据 用3d加大小和颜色

# Visualizing 5-D mix data using bubble charts
# leveraging the concepts of hue, size and depth
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
t = fig.suptitle('Wine Residual Sugar - Alcohol Content - Acidity - Total Sulfur Dioxide - Type', fontsize=14)xs = list(wines['residual sugar'])
ys = list(wines['alcohol'])
zs = list(wines['fixed acidity'])
data_points = [(x, y, z) for x, y, z in zip(xs, ys, zs)]ss = list(wines['total sulfur dioxide'])
colors = ['red' if wt == 'red' else 'yellow' for wt in list(wines['wine_type'])]for data, color, size in zip(data_points, colors, ss):x, y, z = dataax.scatter(x, y, z, alpha=0.4, c=color, edgecolors='none', s=size)ax.set_xlabel('Residual Sugar')
ax.set_ylabel('Alcohol')
ax.set_zlabel('Fixed Acidity')
plt.savefig('./view_5d_by_3d.jpg')

 13.可视化6d数据 用3d加大小,颜色和形状

fig = plt.figure(figsize=(8, 6))
t = fig.suptitle('Wine Residual Sugar - Alcohol Content - Acidity - Total Sulfur Dioxide - Type - Quality', fontsize=14)
ax = fig.add_subplot(111, projection='3d')xs = list(wines['residual sugar'])
ys = list(wines['alcohol'])
zs = list(wines['fixed acidity'])
data_points = [(x, y, z) for x, y, z in zip(xs, ys, zs)]ss = list(wines['total sulfur dioxide'])
colors = ['red' if wt == 'red' else 'yellow' for wt in list(wines['wine_type'])]
markers = [',' if q == 'high' else 'x' if q == 'medium' else 'o' for q in list(wines['quality_label'])]for data, color, size, mark in zip(data_points, colors, ss, markers):x, y, z = dataax.scatter(x, y, z, alpha=0.4, c=color, edgecolors='none', s=size, marker=mark)ax.set_xlabel('Residual Sugar')
ax.set_ylabel('Alcohol')
ax.set_zlabel('Fixed Acidity')
plt.savefig('./view_6d_by_3d.jpg')

 

参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493058.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

建立带头结点的双向链表_尾插法

// ------------------------------------------------------- //2014--03--14 // 建立双向链表 // 程序分析&#xff1a;双向链表的节点有两个指针域&#xff0c;一个指向直接前驱&#xff0c;另一个指向直接后继。 // 其中第一个节点的前驱指针为NULL &#xff0c;最…

后摩尔定律时代的芯片新选择!

来源&#xff1a;gizmodo摘要&#xff1a;很长一段时间以来&#xff0c;摩尔定律和它的最终结局一直就像房间里的大象&#xff0c;不容忽视。英特尔联合创始人戈登摩尔在1965年的一篇论文中预测&#xff0c;芯片中的晶体管数量每年将翻一番。更多的晶体管意味着更快的速度&…

C++建立队列_利用链表

// c 实现链表队列 // .h 文件 // 文件名&#xff1a; Queue.h //------------------------------------------------- #pragma once//------------------------------------------------- #include <iostream> using namespace std; //------------------------------…

关于Adapter

ArrayAdapter------------>单一值 SimpleAdapter---------->HashMap<String,Object> 多值 BaseAdapter------------>更复杂的数据 SimpleAdapter / BaseAdapter 比较常用 转载于:https://www.cnblogs.com/daishuguang/p/3889143.html

MSE和Cross-entropy梯度更新比较

一.平方损失(MSE) Loss函数: 梯度: 由于x,y是已知的&#xff0c;故可以忽略掉 梯度更新: sigmoid函数: 可以看出 导数在z取大部分值&#xff0c;都是很小的&#xff0c;这样会使梯度更新慢&#xff0e; y为1或0是&#xff0c;当a1,w的梯度为0,a0,w的梯度为0&#xff0c;故就…

麦卡锡问答:什么是人工智能?

来源&#xff1a;科学网一、基本问题问&#xff1a;什么是人工智能&#xff1f;答&#xff1a;人工智能是研制智能机器尤其是智能计算机程序的科学与工程。它与使用计算机理解人类智能类似&#xff0c;但人工智能并不将它自己局限于生物意义上的方法。问&#xff1a;是的&#…

操作系统--多进程管理CPU

一.cpu管理直观做法 最只管想法cpu循环取址执行&#xff0c;所以只需要设好pc初值即可 存在问题:io会占用时间长&#xff0c;导致cpu利用率低. 所以需要不停切换&#xff0c;执行多个程序&#xff0c;也就是并发&#xff0e; 但是在切换的时候&#xff0c;除了记录返回地址&a…

脱裤子放屁,多此一举

脱裤子放屁,多此一举.转载于:https://www.cnblogs.com/zhangzujin/p/3892468.html

胶囊网络、边缘计算:2018年13个最新人工智能发展趋势

来源&#xff1a;亿欧智库摘要&#xff1a; 美国知名研究机构CB Insights的报告《2018年必看的人工智能热门趋势》&#xff0c;对AI行业发展现状进行了深入研究剖析&#xff0c;并给出了2018年AI领域最值得关注的13个前沿发展趋势。趋势一&#xff1a;新蓝领的工作——机器人保…

清空输入缓冲区fflush()

转自&#xff1a;http://blog.csdn.net/21aspnet/article/details/174326 scanf( )函数可以接收输入的换行符&#xff0c;\n,(asci为10)&#xff0c;利用函数fflush(stdin),可以清空输入内存缓冲区。 // function name fflush // 清空一个流 ,2014--03--29 #include <std…

操作系统--用户级线程与内核级线程

一.多进程是操作系统基本图像 进程都是在内核进行 二.用户级线程 2.1线程引入 可以切指令不切表&#xff0c;也就是资源不动&#xff0c;指令执行分开&#xff0c;更加轻量化&#xff0c;从而提高效率&#xff0c;保留并发优点&#xff0c;避免进程切换代价&#xff0c;也就…

“新视野”和“最远点”的约会

NASA 设想的2014 MU69 太空岩石 来源&#xff1a;中国科学报当新年香槟将陌生人聚在一起时&#xff0c;一种不同的聚会正在外太阳系进行。在距地球近65亿公里的地方&#xff0c;美国宇航局&#xff08;NASA&#xff09;“新视野”号探测器创下了寻访迄今最遥远世界的纪录。这场…

C语言里的写文件

转载自&#xff1a;http://blog.csdn.net/shuimuzhiyuan/article/details/6908335 部分转载自&#xff1a;http://blog.csdn.net/lijun5635/article/details/13095883 一 、fopen()函数中第一个形式参数表示文件名, 可以包含路径和文件名两部分。如: "B:TEST.DAT"…

操作系统--内核级线程实现

五段论 &#xff1a; 进入内核靠的是中断&#xff0c;fork是创建系统进程调用&#xff0c;进程由资源&#xff0b;执行序列组成&#xff0c;而创建执行序列其实就是创建线程&#xff0e; TSS:任务结构段 参考&#xff1a; 操作系统_哈尔滨工业大学_中国大学MOOC(慕课)…

一文看尽2018全年计算机视觉大突破

来源&#xff1a;极市平台摘要&#xff1a;计算机视觉领域同样精彩纷呈&#xff0c;与四年前相比GAN生成的假脸逼真到让人不敢相信&#xff1b;新工具、新框架的出现&#xff0c;也让这个领域的明天特别让人期待……2018&#xff0c;仍是AI领域激动人心的一年。计算机视觉领域同…

怎样清空输入缓冲区里的内容

参考自&#xff1a;http://blog.csdn.net/devil_2009/article/details/6364759 fflush()的作用是用来刷新缓冲区&#xff0c;fflush(stdin)刷新标准输入缓冲区&#xff0c;把输入缓冲区里的东西丢弃&#xff1b;fflush(stdout)刷新标准输出缓冲区&#xff0c;把输出缓冲区里的东…

leetcode BFS(python+c++)

1.最小基因变化 思路&#xff1a;bfs搜索回溯 python: class Solution:def minMutation(self, start: str, end: str, bank: List[str]) -> int:library [A,C, G,T]queue [start]num 0vis set()while queue:size len(queue)for i in range(size):cur queue.pop(0)i…

cocos2dx 父元素影响子元素

如果a中又b。 设置a的scaleX&#xff0c;a->getboudingbox会变化&#xff0c;contentsize不变化 子元素显示方面也会变化&#xff0c;同样的缩放比例。 子元素和父元素一起变化的属性还有&#xff0c;rotation/skewx/color 子元素不喝父元素一起变化的属性有&#xff1a;opa…

北欧小国的宏大AI实验: 让1%的人口接受人工智能培训

编译&#xff1a; 机器之能 微胖摘要&#xff1a;芬兰希望在人工智能的实际应用方面占据一席之地&#xff0c;成为世界领先国家。2017 年 10 月&#xff0c;芬兰成为欧盟第一个将国家人工智能战略付诸实施的国家。在 2018 年 6 月发布的第二份报告中&#xff0c;政府估计&#…

形象理解矩阵操作

1.矩阵和向量线性变换 线性变换可看着是对空间的挤压伸展。 也就是看成把向量中的值对矩阵列向量加权 ,在对向量求和 2.矩阵和矩阵的线性变换 矩阵左乘就是对行向量操作&#xff0c;矩阵右乘就是对列向量操作&#xff0e; 可以将其中一个矩阵看成是多个列向量,在拆开对剩下矩…