矩阵的物理意义


转载自:http://blog.csdn.net/NightkidLi_911/article/category/2428737

(一)

如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。”


矩阵究竟是什么东西?

向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用?


矩阵的乘法规则究竟为什么这样规定?

为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?
行列式究竟是一个什么东西?

为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?
矩阵为什么可以分块计算?

分块计算这件事情看上去是那么随意,为什么竟是可行的?
*
 对于矩阵转置运算AT,有(AB)T = (B)T(A)T,对于矩阵求逆运算A-1,有(AB)-1 = (B)-1(A)-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?
为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?

特征值和特征向量的本质是什么?

它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?

 

今天先谈谈对线形空间和矩阵的几个核心概念的理解。首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。

总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。

我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已

因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

 

下面我们来看看线性空间。线性空间的定义任何一本书上都有(线性空间是这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任意元素与任意数(可以是实数也可以是复数,也可以是任意给定域中的元素)相乘后得到此集合内的另一元素。),但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:

1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?

2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?

我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:

L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ...,xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。

L2. 闭区间[a, b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据魏尔斯特拉斯定理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。这样就把问题归结为L1了。后面就不用再重复了。

所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。这里头大有文章,因为向量表面上只是一列数,但是其实由于它的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。这是另一个问题了,这里就不说了。

下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。

线性空间中的运动,被称为线性变换。也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。那么,线性变换如何表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。
简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。
可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。

矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。

不过在我这个《理解矩阵》的文章里,运动”的概念不是微积分中的连续性的运动,而是瞬间发生的变化。比如这个时刻在A点,经过一个“运动”,一下子就“跃迁”到了B点,其中不需要经过A点与B点之间的任何一个点。这样的“运动”,或者说“跃迁”,是违反我们日常的经验的。不过了解一点量子物理常识的人,就会立刻指出,量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,具有这样一种跃迁行为。所以说,自然界中并不是没有这种运动现象,只不过宏观上我们观察不到。但是不管怎么说,“运动”这个词用在这里,还是容易产生歧义的,说得更确切些,应该是“跃迁”。因此这句话可以改成:

矩阵是线性空间里跃迁的描述”

可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁。再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。附带说一下,这个仿射空间跟向量空间是亲兄弟。做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。
一旦我们理解了“变换”这个概念,矩阵的定义就变成:
矩阵是线性空间里的变换的描述。”

到这里为止,我们终于得到了一个看上去比较数学的定义。不过还要多说几句。教材上一般是这么说的,在一个线性空间V里的一个线性变换T,当选定一组基之后,就可以表示为矩阵。因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基。线性变换的定义是很简单的,设有一种变换T,使得对于线性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有:T(ax + by)=aT(x) + bT(y),那么就称T为线性变换。

定义都是这么写的,但是光看定义还得不到直觉的理解。线性变换究竟是一种什么样的变换?我们刚才说了,变换是从空间的一个点跃迁到另一个点,而线性变换,就是从一个线性空间V的某一个点跃迁到另一个线性空间W的另一个点的运动。这句话里蕴含着一层意思,就是说一个点不仅可以变换到同一个线性空间中的另一个点,而且可以变换到另一个线性空间中的另一个点去。不管你怎么变,只要变换前后都是线性空间中的对象,这个变换就一定是线性变换,也就一定可以用一个非奇异矩阵来描述。而你用一个非奇异矩阵去描述的一个变换,一定是一个线性变换。有的人可能要问,这里为什么要强调非奇异矩阵?所谓非奇异,只对方阵有意义,(定义:若n阶矩阵A的行列式不为零,即 |A|≠0,则称A为非奇异矩阵或满秩矩阵,否则称A为奇异矩阵或降秩矩阵。n 阶方阵 A 是非奇异方阵的充要条件是 A 为可逆矩阵,也即A的行列式不为零。即矩阵(方阵)A可逆与矩阵A非奇异是等价的概念。)那么非方阵的情况怎么样?这个说起来就会比较冗长了,最后要把线性变换作为一种映射,并且讨论其映射性质,以及线性变换的核与像等概念才能彻底讲清楚。我觉得这个不算是重点,如果确实有时间的话,以后写一点。以下我们只探讨最常用、最有用的一种变换,就是在同一个线性空间之内的线性变换。也就是说,下面所说的矩阵,不作说明的话,就是方阵,而且是非奇异方阵。学习一门学问,最重要的是把握主干内容,迅速建立对于这门学问的整体概念,不必一开始就考虑所有的细枝末节和特殊情况,自乱阵脚。

接着往下说,什么是基呢?这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。就这意思。
好,最后我们把矩阵的定义完善如下:

矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。就好像我们熟悉的面向对象编程中,一个对象可以有多个引用,每个引用可以叫不同的名字,但都是指的同一个对象。如果还不形象,那就干脆来个很俗的类比。
比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话。
好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:
若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:
A = P^(-1) *B *P

线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。俗了一点,不过能让人明白。

而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系。

这个发现太重要了。原来一族相似矩阵都是同一个线性变换的描述啊!难怪这么重要!工科研究生课程中有矩阵论、矩阵分析等课程,其中讲了各种各样的相似变换,比如什么相似标准型,对角化之类的内容,都要求变换以后得到的那个矩阵与先前的那个矩阵式相似的,为什么这么要求?因为只有这样要求,才能保证变换前后的两个矩阵是描述同一个线性变换的。当然,同一个线性变换的不同矩阵描述,从实际运算性质来看并不是不分好环的。有些描述矩阵就比其他的矩阵性质好得多。这很容易理解,同一头猪的照片也有美丑之分嘛。所以矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个线性变换。

这样一来,矩阵作为线性变换描述的一面,基本上说清楚了。但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)变换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。


首先来总结一下前面两部分的一些主要结论
1.
 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。
2.
 有一种空间叫线性空间,线性空间是容纳向量对象运动的。
3.
 运动是瞬时的,因此也被称为变换。
4.
 矩阵是线性空间中运动(变换)的描述。
5.
 矩阵与向量相乘,就是实施运动(变换)的过程。
6.
 同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。

 

(后面的没有转载)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/492934.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一些看起来简单做起来难的程序员笔试面试题集锦

1、判断三个bool值中是否至少有两个bool为真? 此题有几种不同的解法 (1)传统解法 bool leastTwo(bool a, bool b, bool c){return (a&&b) || (b&&c) || (c&&a); }(2)如果学过电路的可以考虑利…

如何防止基因编辑技术突破底线:警惕科学狂人再现

作者:胡丹萍 吴跃伟 刘楚来源:澎湃新闻从前隅于学界的基因编辑一词,在2018年,有如一声惊雷传入寻常百姓家。DNA和基因是生物体的核心代码,使用一组生物分子像剪刀或橡皮一样精确地改变基因序列即基因编辑技术。几十年来…

二分查找算法java

二分查找又称折半查找,它是一种效率较高的查找方法。 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待…

opencv简单的矩阵操作

OpenCV的基本矩阵操作与示例 OpenCV中的矩阵操作非常重要,本文总结了矩阵的创建、初始化以及基本矩阵操作,给出了示例代码,主要内容包括: 创建与初始化矩阵加减法矩阵乘法矩阵转置矩阵求逆矩阵非零元素个数矩阵均值与标准差矩阵全…

中科院院士丁汉:数字化制造、机器人、人工智能是智能制造 “三驾马车”

丁汉院士演讲1月10日,由中国机电一体化技术应用协会、北京理工大学智能机器人与系统高精尖创新中心、中关村智友天使学院、机器人大讲堂(立德共创服务平台)、中关村融智特种机器人产业联盟和中关村信息谷等单位共同举办的2019年中国机器人行业年会在北京召开。会上&…

图像拼接---图片柱面投影简单实现

算法思想参考:http://blog.csdn.net/weixinhum/article/details/50611750 柱面投影是图片拼接的前期的一部分工作,以下代码只是简单的实现了投影,还可以优化, 柱面半径设置位图片宽度的一半,即 R width/2 代码运算…

photoshop问题

1、路径与形状有什么区别? 2、矢量蒙板作用及生成? 形状工具 U 可以生成 3、路径和形状的区别? 路径 矢量选区,半成品可转为蒙板,形状转载于:https://www.cnblogs.com/anjsxz/p/3963400.html

从消费端到企业端,从设备到数据:物联网市场的爆发式增长

来源:资本家实验室随着越来越多的设备接入网络,并实现相互沟通,我们正在加速进入“万物互联”的时代。在此背景下,连接设备的数量、产生的收入和数据量也将呈现惊人的增长:到2020年,全球连接设备数量将达到…

《LoadRunner 没有告诉你的》之四——理解性能

本文是《LoadRunner没有告诉你的》系列文章的第四篇,在这篇短文中,我将尽可能用简洁清晰的文字写下我对“性能”的看法,并澄清几个容易混淆的概念,帮助大家更好的理解“性能”的含义。 如何评价性能的优劣: 用户视角 vs. 系统视角…

容斥原理---概念介绍

容斥原理---概念介绍 容斥原理是一种基本的计数工具。 假设我们有N个对象的集合A,设a1, a2,…, ar是这些对象可能有的性质的集合,设N(ai )是有性质ai的对象数目。一个对象可能有若干个所讨论的性质(或一个性质也没有)。设N(a’i …

c#自动更新+安装程序的制作

一、自动更新的实现 让客户端实现自动更新,通常做法是在客户端部署一个单独的自动更新程序。主程序启动后,访问服务端,检查配置文件是否有更新版本,有更新版本就启动更新程序,由更新负责下载更新版本,并更新…

中国AI科研产出全球第一 但引文影响力低

来源:科学网 日前,爱思唯尔发布了《人工智能:知识的创造、转移与应用》报告,分析了全球人工智能科研的发展趋势。报告显示,2017年中国在人工智能领域出版的文章数量位列全球第一,科研产出已在2004年超过美国…

OpenCV--SIFT算法检测特征点

代码选自:http://blog.csdn.net/zhaocj/article/details/42124473 SIFT算法是用来检测图像中特征点的, 代码如下: opencv版本:2.4.9 #include "opencv2/opencv.hpp" #include "opencv2/imgproc/imgproc.hpp" #include…

对话 Geoffrey Hinton Demis Hassabis :人工智能离我们有多远?

来源:AI科技评论预测用户喜欢的音乐类型、检测出转移性肿瘤、生成脑癌的综合扫描、利用真实世界中拍摄的视频创造出虚拟环境、识别出被拐卖的人口、击败国际象棋大师以及专业的 Dota2 电竞团队、帮助 Alphabet 旗下的 Waymo 首次推出商业无人驾驶出租车服务、代替出…

SharePoint 2013 关于自定义显示列表表单的bug

1、在SharePoint 2013中,我们隐藏列表Dispform页面的ListFormWebPart部件,转而使用自定义显示列表表单进行展示,因为这样更容易定制我们需要的显示; 2、之后发现文件夹下的文档,查看属性会报错,如下图&…

SIFT算法中概念简单解释

尺度空间 真实世界的物体只有在一定尺度上才有意义,例如我们能够看到放在桌子上的水杯,但对于整个银河系,这个水杯是不存在的。物体的这种多尺度的本质在自然界中是普遍存在的。尺度空间就是试图在数字图像领域复制这个概念。又比如&#xf…

发布|CES 2019 科技趋势(附40页PPT)

来源:Robot未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网&#xff…

UVAL - 6755 - Swyper Keyboard

先上题目: https://icpcarchive.ecs.baylor.edu/external/67/6755.pdf 题目复制起来比较麻烦。 题意:定义一种操作:给出一个字符串,然后手指就按照给出的字符串的字符出现顺序不离开触摸屏那样移动,这样最后就会得到一…

Ransac算法简介

给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中&#xf…

2018年AI和ML(NLP、计算机视觉、强化学习)技术总结和2019年趋势

来源:网络大数据1、简介过去几年一直是人工智能爱好者和机器学习专业人士最幸福的时光。因为这些技术已经发展成为主流,并且正在影响着数百万人的生活。各国现在都有专门的人工智能规划和预算,以确保在这场比赛中保持优势。数据科学从业人员也…