吴恩达《机器学习》笔记八——逻辑回归(多分类)代码
- 导入模块及加载数据
- sigmoid函数与假设函数
- 代价函数
- 梯度下降
- 一对多分类
- 预测验证
课程链接:https://www.bilibili.com/video/BV164411b7dx?from=search&seid=5329376196520099118
之前笔记七里介绍了二分类问题的逻辑回归代码,涉及到了线性与非线性假设,是否使用正则化等问题,这次做一个推广,用逻辑回归来解决一个多分类问题,手写数字识别,这个问题如今更多在深度学习里使用神经网络来解决。
本次笔记用到的数据集:
链接:https://pan.baidu.com/s/1_HvmGeQfzv4bc7zBTvyEXw
提取码:rdks
导入模块及加载数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
数据集是在MATLAB的本机格式,所以要加载它到Python,需要使用一个SciPy工具。
data = loadmat('ex3data1.mat')
data
看一下数据的维度:
data['X'].shape, data['y'].shape
图像在martix X中表示为400维向量(其中有5,000个)。 400维“特征”是原始20 x 20图像中每个像素的灰度强度。类标签在向量y中作为表示图像中数字的数字类。
第一个任务是将我们的逻辑回归实现修改为完全向量化(即没有“for”循环)。这是因为向量化代码除了简洁外,还能够利用线性代数优化,并且通常比迭代代码快得多。
sigmoid函数与假设函数
g 代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function),公式为:
逻辑回归模型的假设函数:
def sigmoid(z):return 1 / (1 + np.exp(-z))
代价函数
def cost(theta, X, y, learningRate):# INPUT:参数值theta,数据X,标签y,学习率# OUTPUT:当前参数值下的交叉熵损失# TODO:根据参数和输入的数据计算交叉熵损失函数# STEP1:将theta, X, y转换为numpy类型的矩阵theta =np.matrix(theta)X = np.matrix(X)y = np.matrix(y)# STEP2:根据公式计算损失函数(不含正则化)cross_cost =np.multiply(-y, np.log(sigmoid(X * theta.T)))-np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))# STEP3:根据公式计算损失函数中的正则化部分reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2))# STEP4:把上两步当中的结果加起来得到整体损失函数whole_cost=np.sum(cross_cost)/len(X)+regreturn whole_cost
梯度下降
如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对 θ0 进行正则化,所以梯度下降算法将分两种情形:
def gradient(theta, X, y, learningRate):# INPUT:参数值theta,数据X,标签y,学习率# OUTPUT:当前参数值下的梯度# TODO:根据参数和输入的数据计算梯度# STEP1:将theta, X, y转换为numpy类型的矩阵theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)# STEP2:将theta矩阵拉直(转换为一个向量)parameters =int(theta.ravel().shape[1])# STEP3:计算预测的误差 error = sigmoid(X * theta.T) - y# STEP4:根据上面的公式计算梯度grad = ((X.T * error) / len(X)).T + ((learningRate / len(X)) * theta)# STEP5:由于j=0时不需要正则化,所以这里重置一下grad[0, 0] = np.sum(np.multiply(error, X[:,0])) / len(X)return np.array(grad).ravel()
一对多分类
现在已经定义了代价函数和梯度函数,是构建分类器的时候了。 对于这个任务,我们有10个可能的类,并且由于逻辑回归只能一次在2个类之间进行分类,我们需要多类分类的策略。 在本练习中,任务是实现一对一全分类方法,其中具有k个不同类的标签就有k个分类器,每个分类器在“类别 i”和“不是 i”之间决定。 我们将把分类器训练包含在一个函数中,该函数计算10个分类器中的每个分类器的最终权重,并将权重返回为k ×(n + 1)数组,其中n是参数数量。
from scipy.optimize import minimizedef one_vs_all(X, y, num_labels, learning_rate):rows = X.shape[0]params = X.shape[1]# k X (n + 1) array for the parameters of each of the k classifiersall_theta = np.zeros((num_labels, params + 1))# insert a column of ones at the beginning for the intercept termX = np.insert(X, 0, values=np.ones(rows), axis=1)# labels are 1-indexed instead of 0-indexedfor i in range(1, num_labels + 1):theta = np.zeros(params + 1)y_i = np.array([1 if label == i else 0 for label in y])y_i = np.reshape(y_i, (rows, 1))# minimize the objective functionfmin = minimize(fun=cost, x0=theta, args=(X, y_i, learning_rate), method='TNC', jac=gradient)all_theta[i-1,:] = fmin.xreturn all_theta
这里需要注意的几点:首先,我们为theta添加了一个额外的参数(与训练数据一列),以计算截距项(常数项)。 其次,我们将y从类标签转换为每个分类器的二进制值(要么是类i,要么不是类i)。 最后,我们使用SciPy的较新优化API来最小化每个分类器的代价函数。 如果指定的话,API将采用目标函数,初始参数集,优化方法和jacobian(渐变)函数。 然后将优化程序找到的参数分配给参数数组。
实现向量化代码的一个更具挑战性的部分是正确地写入所有的矩阵,保证维度正确。
rows = data['X'].shape[0]
params = data['X'].shape[1]all_theta = np.zeros((10, params + 1))X = np.insert(data['X'], 0, values=np.ones(rows), axis=1)theta = np.zeros(params + 1)y_0 = np.array([1 if label == 0 else 0 for label in data['y']])
y_0 = np.reshape(y_0, (rows, 1))X.shape, y_0.shape, theta.shape, all_theta.shape
注意,theta是一维数组,因此当它被转换为计算梯度的代码中的矩阵时,它变为(1×401)矩阵。 我们还检查y中的类标签,以确保它们看起来像我们想象的一致。
np.unique(data['y'])#看下有几类标签
让我们确保我们的训练函数正确运行,并且得到合理的输出。
all_theta = one_vs_all(data['X'], data['y'], 10, 1)
all_theta
预测验证
我们现在准备好最后一步 - 使用训练完毕的分类器预测每个图像的标签。 对于这一步,我们将计算每个类的类概率,对于每个训练样本(使用当然的向量化代码),并将输出类标签为具有最高概率的类。
Tip:可以使用np.argmax()函数找到矩阵中指定维度的最大值。
def predict_all(X, all_theta):# INPUT:参数值theta,测试数据X# OUTPUT:预测值# TODO:对测试数据进行预测# STEP1:获取矩阵的维度信息rows = X.shape[0]params = X.shape[1]num_labels = all_theta.shape[0]# STEP2:把矩阵X加入一行零元素X = np.insert(X, 0, values=np.ones(rows), axis=1)# STEP3:把矩阵X和all_theta转换为numpy型矩阵X = np.matrix(X)all_theta = np.matrix(all_theta)# STEP4:计算样本属于每一类的概率h = sigmoid(X * all_theta.T)# STEP5:找到每个样本中预测概率最大的值h_argmax = np.argmax(h, axis=1)# STEP6:因为我们的数组是零索引的,所以我们需要为真正的标签+1h_argmax = h_argmax + 1return h_argmax
现在我们可以使用predict_all函数为每个实例生成类预测,看看我们的分类器是如何工作的。
y_pred = predict_all(data['X'], all_theta)
correct = [1 if a == b else 0 for (a, b) in zip(y_pred, data['y'])]
accuracy = (sum(map(int, correct)) / float(len(correct)))
print ('accuracy = {0}%'.format(accuracy * 100))