PyTorch框架学习一——PyTorch的安装(CPU版本)

PyTorch框架学习一——PyTorch的安装(CPU版本)

  • PyTorch简介
  • PyTorch的安装(CPU版)

机器学习/深度学习领域的学习都是需要理论和实践相结合的,而它们的实践都需要借助于一个框架来实现,PyTorch在学术界目前处于主流的地位,而且据说上手较快,从今天起开始学习该框架,为后面的学习打一个基础。

PyTorch简介

PyTorch背后的东家是Facebook。2017年1月FAIR(Facebook AI Research)首次发布了PyTorch。他的前身是Torch,而Torch是采用很小众的Lua语言为接口的机器学习框架,正因为Lua非常小众,所以Torch的知名度很低。

PyTorch是在Torch的基础上用Python语言重新打造的一款深度学习框架。不仅能够实现强大的GPU加速,同时还支持动态神经网络,这是很多主流深度学习框架比如Tensorflow等都不支持的。

PyTorch经历了如下的一些重大发展:

2017年1月正式发布PyTorch
2018年4月更新0.4.0版,支持Windows系统,caffe2正式进入PyTorch
2018年11月更新1.0稳定版,是GitHub上增长第二块的开源项目
2019年5月更新1.1.0版,支持TensorBoard,增强可视化功能
2019年8月更新1.2.0版,更新torchvision、torchaudio和torchtext,增加更多功能

PyTorch学习过程中需要查找官方文档:https://pytorch.org/docs/stable/index.html

PyTorch的安装(CPU版)

因为我的电脑是AMD锐龙的CPU和GPU,不能使用CUDA和CuDnn,也就不能在本机上安装GPU版本,所以只能安装CPU版本用于学习,后续若需要跑大型的深度学习算法,则需要转至服务器上跑,本机只是学习需要,下面就来看一下PyTorch的安装过程(默认已经安装anaconda和pycharm):

1.打开Anaconda的Prompt命令窗口,先为PyTorch框架构建一个虚拟环境,Anaconda的好处就是可以构建很多个不同的虚拟环境,每个环境有着各自不同的框架或者说不同的Python解释器和工具包,命令如下,这里使用的Python的版本为3.7:
在这里插入图片描述
构建好虚拟环境后通过命令conda activate Pytorch_cpu来进入该虚拟环境:
在这里插入图片描述我们需要在该虚拟环境下安装PyTorch和 torchvision 。

2.下面我们进入到PyTorch的官网:https://pytorch.org/
在这里插入图片描述
点击Get Started,进入后按照如下选择(只针对windows系统、pip安装、Python版本、无GPU的情况,如有其它需要则应该选择相应的):
在这里插入图片描述
下面已经自动生成了一句安装PyTorch和torchvision的命令,查看一下版本无误的话就复制这条命令并粘贴到prompt命令窗口中:
在这里插入图片描述
这边是已经安装过了所以没有下载安装的过程,第一次安装会需要下载并安装,过程可能会很慢,这里建议换成国内的镜像源的快速度会得到飞速的提升。

3.以上如果没有问题的话则已经安装好了cpu版的PyTorch,这时我们可以测试一下是否安装正确:
在这里插入图片描述
如果正确安装的话是可以得到当前PyTorch的版本和是否GPU版本的。

4.最后我们较好使用PyTorch的IDE是pycharm,所以还需要在pycharm上设置一下解释器:

打开Pycharm->文件->设置->项目: (你的项目名)->Project Interpreter:
在这里插入图片描述
在这里插入图片描述
点后面的这个小齿轮->Add…,然后选择Conda Environment:
在这里插入图片描述
选择Existing Environment,点interpreter这行后面的三个小点:
在这里插入图片描述
然后按照你安装Anaconda的路径找到envs文件夹,里面会有相应的python.exe的解释器,选择这个即可:
在这里插入图片描述
这时已经设置好了,我们再在pycharm里测试一下Pytorch:
在这里插入图片描述
运行结果:
在这里插入图片描述
成功!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491741.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你的大脑在自动驾驶,而你一无所知

来源:果壳想象一下,你的大脑里有着两个小人,它们在不停地打架,试图夺取控制你行动的权力。当然,这两个小人并不是你善意和邪恶的念头。那它们是什么?在很多人看来,这两者就是我们的意识和无意识…

常用的损失函数

来自 机器学习成长之路公众号 本文将常用的损失函数分为了两大类:分类和回归。然后又分别对这两类进行了细分和讲解,其中回归中包含了一种不太常见的损失函数:平均偏差误差,可以用来确定模型中存在正偏差还是负偏差。 从学习任务…

吴恩达《机器学习》学习笔记十一——应用机器学习的建议

吴恩达《机器学习》学习笔记十一——应用机器学习的建议一、训练完模型后下一步要做什么二、评估算法与模型选择1.训练集与测试集2.训练/测试步骤3.模型选择4.数据集新的划分——验证集的加入三、偏差与方差1.偏差与方差的理解2.正则化和偏差方差的关系3.学习曲线四、决定接下来…

为什么说深耕AI领域绕不开知识图谱?

来源:AI科技大本营“所有在 AI 领域深耕的人,最终都会发现语义鸿沟仍是一个非常具有挑战性的问题,这最终还需要借助知识图谱等技术,来帮助将整体的 AI 认知取得新进展。”在 5 月 26 日的 CTA 峰会机器学习专场,Hulu 首…

机器学习中的相似性度量总结

来自 机器学习算法那些事公众号 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 目录 1. 欧氏距离 …

吴恩达《机器学习》学习笔记十二——机器学习系统

吴恩达《机器学习》学习笔记十二——机器学习系统一、设计机器学习系统的思想1.快速实现绘制学习曲线——寻找重点优化的方向2.误差分析3.数值估计二、偏斜类问题(类别不均衡)三、查准率P与召回率R——代替准确率的评估指标四、查准率与召回率的权衡——…

增强现实:一场正在到来的医疗革命

来源: 资本实验室图像化可以让医生的诊断、决策和治疗更加准确,可以说是医疗史上非常重要的一项技术突破。近几年,通讯技术的发展推动了空间计算的快速商业化。在医疗领域,增强现实(AR)、虚拟现实&#xff…

吴恩达《机器学习》学习笔记十三——机器学习系统(补充)

这次笔记是对笔记十二的补充,之前讨论了评价指标,这次主要是补充机器学习系统设计中另一个重要的方面,用来训练的数据有多少的问题。 笔记十二地址:https://blog.csdn.net/qq_40467656/article/details/107602209 之前曾说过不要…

全球CMOS图像传感器厂商最新排名:黑马杀出

来源:半导体行业观察近期,台湾地区的Yuanta Research发布报告,介绍了其对CMOS图像传感器(CIS)市场的看法,以及到2022年的前景预期。从该研究报告可以看出,2018年全球CMOS图像传感器的市场规模为137亿美元,其…

吴恩达《机器学习》学习笔记十四——应用机器学习的建议实现一个机器学习模型的改进

吴恩达《机器学习》学习笔记十四——应用机器学习的建议实现一个机器学习模型的改进一、任务介绍二、代码实现1.准备数据2.代价函数3.梯度计算4.带有正则化的代价函数和梯度计算5.拟合数据6.创建多项式特征7.准备多项式回归数据8.绘制学习曲线𝜆0𝜆1&…

刘锋 吕乃基:互联网中心化与去中心化之争

前言:本文发表在2019年5月《中国社会科学报》上,主要从神经学角度分析互联网的发育过程,并对云计算和区块链为代表的中心化与去中心化技术趋势进行了探讨。当前,学术界和产业界对互联网的未来发展出现了分歧。随着谷歌、亚马逊、F…

iOS-BMK标注覆盖物

在iOS开发中,地图算是一个比较重要的模块。我们常用的地图有高德地图,百度地图,谷歌地图,对于中国而言,苹果公司已经不再使用谷歌地图,官方使用的是高德地图。下面将讲述一下百度地图开发过程中的一些小的知…

PyTorch框架学习二——基本数据结构(张量)

PyTorch框架学习二——基本数据结构(张量)一、什么是张量?二、Tensor与Variable(PyTorch中)1.Variable2.Tensor三、Tensor的创建1.直接创建Tensor(1)torch.tensor()(2)to…

十年空缺一朝回归,百度正式任命王海峰出任CTO

来源:机器之心百度要回归技术初心了吗?自 2010 年李一男卸任百度 CTO 之后,百度对这一职位就再无公开任命,一空就是 10 年。而今天上午李彦宏突然发出的一纸职位调令,让这个空缺多年的百度 CTO 之位有了新的掌舵手。就…

Windows下卸载TensorFlow

激活tensorflow:activate tensorflow输入:pip uninstall tensorflowProceed(y/n):y如果是gpu版本: 激活tensorflow:activate tensorflow-gpu输入:pip uninstall tensorflow-gpuProceed&#xf…

PyTorch框架学习三——张量操作

PyTorch框架学习三——张量操作一、拼接1.torch.cat()2.torch.stack()二、切分1.torch.chunk()2.torch.split()三、索引1.torch.index_select()2.torch.masked_select()四、变换1.torch.reshape()2.torch.transpace()3.torch.t()4.torch.squeeze()5.torch.unsqueeze()一、拼接 …

'chcp' 不是内部或外部命令,也不是可运行的程序

在cmd窗口中输入activate tensorflow时报错chcp 不是内部或外部命令,也不是可运行的程序 添加两个环境变量即可解决: 将Anaconda的安装地址添加到环境变量“PATH”,如果没有可以新建一个,我的安装地址是“D:\Anaconda”&#xf…

2019年全球企业人工智能发展现状分析报告

来源:199IT互联网数据中心《悬而未决的AI竞赛——全球企业人工智能发展现状》由德勤洞察发布,德勤中国科技、传媒和电信行业编译。为了解全球范围内的企业在应用人工智能技术方面的情况以及所取得的成效,德勤于2018年第三季度针对早期人工智能…

PyTorch框架学习四——计算图与动态图机制

PyTorch框架学习四——计算图与动态图机制一、计算图二、动态图与静态图三、torch.autograd1.torch.autograd.backward()2.torch.autograd.grad()3.autograd小贴士4.代码演示理解(1)构建计算图并反向求导:(2)grad_tens…

美国准备跳过5G直接到6G 用上万颗卫星包裹全球,靠谱吗?

来源:瞭望智库这项2015年提出的计划,规模极其巨大,总计要在2025年前发射近12000颗卫星。有自媒体认为,该计划表示美国将在太空中建立下一代宽带网络,绕过5G,直接升级到6G,并据此认为“6G并不遥远…