MATLAB的Kmeans函数实现聚类

转自https://blog.csdn.net/a493823882/article/details/79282425

使用方法:
      Idx=kmeans(X,K)
      [Idx,C]=kmeans(X,K) 
      [Idx,C,sumD]=kmeans(X,K) 
      [Idx,C,sumD,D]=kmeans(X,K) 
      […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)
各输入输出参数介绍:
       X :N*P的数据矩阵
       K: 表示将X划分为几类,为整数
       Idx :N*1的向量,存储的是每个点的聚类标号
       C: K*P的矩阵,存储的是K个聚类质心位置
      sumD :1*K的和向量,存储的是类间所有点与该类质心点距离之和
      D :N*K的矩阵,存储的是每个点与所有质心的距离
      […]=Kmeans(…,'Param1',Val1,'Param2',Val2,…)
      这其中的参数Param1、Param2等,主要可以设置为如下:
      1. ‘Distance’(距离测度)
        ‘sqEuclidean’ 欧式距离(默认时,采用此距离方式)
        ‘cityblock’ 绝度误差和,又称:L1
        ‘cosine’ 针对向量
        ‘correlation’  针对有时序关系的值
        ‘Hamming’ 只针对二进制数据
      2. ‘Start’(初始质心位置选择方法)
        ‘sample’ 从X中随机选取K个质心点
        ‘uniform’ 根据X的分布范围均匀的随机生成K个质心
        ‘cluster’ 初始聚类阶段随机选择10%的X的子样本(此方法初始使用’sample’方法)
         matrix 提供一K*P的矩阵,作为初始质心位置集合
      3. ‘Replicates’(聚类重复次数)  整数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491746.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吴恩达《机器学习》学习笔记十一——神经网络代码

吴恩达《机器学习》学习笔记十一——神经网络代码数据准备神经网络结构与代价函数初始化设置反向传播算法训练网络与验证课程链接:https://www.bilibili.com/video/BV164411b7dx?fromsearch&seid5329376196520099118 数据集链接:https://pan.baidu…

中国科研人员发明单晶体管逻辑结构新原理

▲随着晶体管不断缩小特征尺寸,集成电路的性能得以持续提升。然而在超小器件尺寸下,硅材料的物理极限导致了功耗的大幅提升,难以进一步持续减小晶体管的特征尺寸。来源:文汇网通过引入层状半导体,并依据其特性设计新型…

Java 内存模型

1、并发模型编程的分类 在并发模型编程中,我们需要解决两个关键问题:线程之间如何通信以及线程之间如何同步。线程之间的通信包括两种:共享内存和消息传递。 Java并发采用的是共享内存模型。 2、Java内存模型的抽象 Java内存模型的主要目标是…

神经网络中Batch和Epoch之间的区别

来自蜂口知道公众号 随机梯度下降法是一种具有大量超参数的学习算法。通常会使初学者感到困惑的两个超参数: Batch大小和Epoch数量,它们都是整数值,看起来做的事情是一样的。在这篇文章中,您将发现随机梯度下降中Batch和Epoch之间的差异。 阅读这篇文章…

PyTorch框架学习一——PyTorch的安装(CPU版本)

PyTorch框架学习一——PyTorch的安装(CPU版本)PyTorch简介PyTorch的安装(CPU版)机器学习/深度学习领域的学习都是需要理论和实践相结合的,而它们的实践都需要借助于一个框架来实现,PyTorch在学术界目前处于…

你的大脑在自动驾驶,而你一无所知

来源:果壳想象一下,你的大脑里有着两个小人,它们在不停地打架,试图夺取控制你行动的权力。当然,这两个小人并不是你善意和邪恶的念头。那它们是什么?在很多人看来,这两者就是我们的意识和无意识…

常用的损失函数

来自 机器学习成长之路公众号 本文将常用的损失函数分为了两大类:分类和回归。然后又分别对这两类进行了细分和讲解,其中回归中包含了一种不太常见的损失函数:平均偏差误差,可以用来确定模型中存在正偏差还是负偏差。 从学习任务…

吴恩达《机器学习》学习笔记十一——应用机器学习的建议

吴恩达《机器学习》学习笔记十一——应用机器学习的建议一、训练完模型后下一步要做什么二、评估算法与模型选择1.训练集与测试集2.训练/测试步骤3.模型选择4.数据集新的划分——验证集的加入三、偏差与方差1.偏差与方差的理解2.正则化和偏差方差的关系3.学习曲线四、决定接下来…

为什么说深耕AI领域绕不开知识图谱?

来源:AI科技大本营“所有在 AI 领域深耕的人,最终都会发现语义鸿沟仍是一个非常具有挑战性的问题,这最终还需要借助知识图谱等技术,来帮助将整体的 AI 认知取得新进展。”在 5 月 26 日的 CTA 峰会机器学习专场,Hulu 首…

Ruby 变量

Ruby 之初体验。接着学习,昨天竟然病了,懈怠了。要坚持锻炼丫,就和坚持写博客似的。 来,下面接着唠。 来侃侃变量,百度上说是能储存计算结果或能表示值抽象概念。顾名思义就是可变化的值。 Ruby 支持五种类型的变量。 …

机器学习中的相似性度量总结

来自 机器学习算法那些事公众号 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 目录 1. 欧氏距离 …

吴恩达《机器学习》学习笔记十二——机器学习系统

吴恩达《机器学习》学习笔记十二——机器学习系统一、设计机器学习系统的思想1.快速实现绘制学习曲线——寻找重点优化的方向2.误差分析3.数值估计二、偏斜类问题(类别不均衡)三、查准率P与召回率R——代替准确率的评估指标四、查准率与召回率的权衡——…

增强现实:一场正在到来的医疗革命

来源: 资本实验室图像化可以让医生的诊断、决策和治疗更加准确,可以说是医疗史上非常重要的一项技术突破。近几年,通讯技术的发展推动了空间计算的快速商业化。在医疗领域,增强现实(AR)、虚拟现实&#xff…

android user版本默认开启调试模式

由于项目需要,需要发布版本默认开启调试模式,修改方式如下: 1.开启开发者模式 context.getSharedPreferences(DevelopmentSettings.PREF_FILE,Context.MODE_PRIVATE).edit().putBoolean( DevelopmentSettings.PREF_SHOW, true).apply(); 2.勾…

吴恩达《机器学习》学习笔记十三——机器学习系统(补充)

这次笔记是对笔记十二的补充,之前讨论了评价指标,这次主要是补充机器学习系统设计中另一个重要的方面,用来训练的数据有多少的问题。 笔记十二地址:https://blog.csdn.net/qq_40467656/article/details/107602209 之前曾说过不要…

TensorFlow实现简单的卷积网络

使用的数据集是MNIST,下载方法见之前的博客 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist input_data.read_data_sets(r"D:\PycharmProjects\tensorflow\MNIST_data", one_hotTrue) sess tf.Interactiv…

BZOJ2819 Nim(DFS序)

题目:单点修改、树链查询。 可以直接用树链剖分做。。 修改是O(QlogN),查询是O(QlogNlogN),QN500000; 听说会超时。。 这题也可以用DFS序来做。 先不看修改,单单查询:可以求出每个点到根的xor值&#xff0c…

全球CMOS图像传感器厂商最新排名:黑马杀出

来源:半导体行业观察近期,台湾地区的Yuanta Research发布报告,介绍了其对CMOS图像传感器(CIS)市场的看法,以及到2022年的前景预期。从该研究报告可以看出,2018年全球CMOS图像传感器的市场规模为137亿美元,其…

下载CIFAR-10、CIFAR-100数据集的方法

该网站的数据集目录MNISTCIFAR-10CIFAR-100STL-10SVHNILSVRC2012 task 1 网址:http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

吴恩达《机器学习》学习笔记十四——应用机器学习的建议实现一个机器学习模型的改进

吴恩达《机器学习》学习笔记十四——应用机器学习的建议实现一个机器学习模型的改进一、任务介绍二、代码实现1.准备数据2.代价函数3.梯度计算4.带有正则化的代价函数和梯度计算5.拟合数据6.创建多项式特征7.准备多项式回归数据8.绘制学习曲线𝜆0𝜆1&…