非侵入脑机接口新突破!用意念控制光标,连续追踪效果提升5倍

640?wx_fmt=jpeg

来源:智东西


看点:CMU研究人员在使用非侵入式脑机接口开发了第一个成功用意念控制的机械臂,展现了连续追踪和跟踪计算机光标的能力。

智东西6月23日消息,卡内基梅隆大学与明尼苏达大学的研究人员在非侵入式机器人设备控制领域取得了突破性的进展——使用非侵入式脑机接口(BCI),开发了有史以来第一个能用意念控制连续追踪电脑光标的机械臂。

人们从上个世纪90年代就开始研究如何用意念远程操控外物,这一研究领域的一大难点在于,如何在不需要向大脑植入任何芯片和传感器的情况下,获取大脑发出的信号。

对于机械臂而言,举起重物、抓取物品等行动早已如同探囊取物,但高精度、灵敏的运动规划依然困难重重。在这项新研究出现前,用非侵入式脑机接口控制的机械臂一直以不稳定、不连续的方式跟随电脑上光标的移动,看起来就好像屏幕卡顿了一样,延迟问题非常明显。

640?wx_fmt=gif

而这一研究团队构建了一种新的框架,采用一种人机相互适应的训练方式,通过定向增加用户学习和机器学习能力,改进脑机接口的“大脑”和“计算机”组成部分,并通过脑电图(EEG,Electroencephalogram)源成像的方式提高非侵入性神经数据的空间分辨率。

最终,他们不仅将传统的非侵入式脑机接口学习能力提升了近60%,还将连续追踪电脑光标的能力提升了5倍以上。也就是说,机械臂能够实时连续地操纵电脑光标,几乎接近你直接用手操控鼠标光标的体验。这对于需要借助假肢的患者而言,绝对是一个福音。

这一研究成果已于美国时间2019年6月19日发表在机器人顶级期刊《Science Robotics》上,名为《用于机器人设备控制的非侵入式神经成像增强连续神经追踪(Noninvasive neuroimaging enhances continuous neural tracking for robotic device control)》。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

非侵入式脑机接口更安全,低信号分辨率成发展阻碍

这项突破性的研究关乎两个关键的前沿研究领域——脑机接口和机械臂高精度实时运动规划。

顾名思义,脑机接口(BCI,Brain-computer interface)指的是在人或动物大脑和外部机器设备之间建立的直接连接通路,大脑一发出信号,机器就能执行大脑所传达的指令。

根据研究机构Allied Market Research的研究报告,全球脑机接口市场预计在2020年将达到14.6亿美元,从2014至2020年的年复合增长率为11.5%。

脑机接口在医疗保健、智能家居控制、娱乐和游戏等领域正得到越来越广泛的应用。其中,医疗保健领域一直是脑机接口应用率最高的市场,瘫痪、肌肉萎缩、脊髓损伤、肢体残疾等患者可以借此补足缺失的身体功能,实现和环境以及其他人之间的互动。

640?wx_fmt=jpeg

脑机接口主要分为侵入式、部分侵入式和非侵入式三种类型。侵入式需要往大脑里植入神经芯片、传感器等外来设备;部分侵入式一般植入到颅腔内、灰质外;非侵入式有脑电图(EEG)、功能性磁共振成像(fMRI)等类型,通常是通过脑电帽接触头皮的方式,间接获取大脑皮层神经信号。

这些不同领域的复杂程度各不相同。侵入式相对容易实现,但面临植入流程复杂、需要专业医疗和外科知识来正确安装和操作、植入物可能引起人体排异反应以及造成感染等问题。

而非侵入式使用的是外部传感器,价格相对低廉且更方便人们佩戴,但因为不是直接接触,它接收到的信号会有更多的噪音,导致它记录到的信号分辨率和控制精度很难达到像侵入式那么高。

由于非侵入式的易用性,2013年,非侵入式脑机接口已经占了整个脑机接口市场收入的85%,并在未来表现出稳定的增长状态。

尽管非侵入式更受欢迎,但在预期患者群体中处于最高优先级的手臂或手部控制的恢复、增强或辅助技术方面,基于脑电图的脑机接口却并不是很有效,因为在实际临床应用中,机械臂的协调导航和精准定位对于患者体验而言至关重要。

为了满足这一需求,卡内基梅隆大学与明尼苏达大学的研究团队提出了一种统一的非侵入式框架,基于EEG实现对物理机械臂连续流畅的的二维控制与追踪。

640?wx_fmt=jpeg

华人学术领袖:已实现高分辨率,研发连续追踪新范式

其中一个研究人员叫贺斌,现任卡内基·梅隆大学(Carnegie Mellon University)的生物医学工程系主任和神经科学研究所电气与计算机工程系教授。

贺斌在1982年本科毕业于浙江大学电气工程专业,1985年获东京工业大学电气工程硕士学位,1988年获东京工业大学生物电工学博士学位,并于1991年拿到在哈佛大学-麻省理工学院(MIT)的生物医学工程博士后奖学金。

他在功能性生物医学成像、多模式神经成像和非侵入式脑机界面等神经工程和生物医学成像领域做出了重要的研究和教育贡献。

640?wx_fmt=jpeg▲2018年,贺斌在浙江大学开《神经工程及脑成像》专题讲座

他的开创性研究将脑电图从一维检测技术转变为三维神经成像模式。2016年12月,其团队首次证明人类在没有植入脑电极的情况下,仅用意念就可以控制三维空间中的机械臂抓取、放置物品和驾驶无人机。

目前,贺斌在主要推进的一个研究领域,即是开发出帮助残疾患者的非侵入式心智控制脑机界面。

640?wx_fmt=jpeg▲专题讲座现场

贺斌表示,使用脑植入物的意念控制机器人设备已经取得了重大进展。这是一门很棒的科学,而非侵入性是这项研究的最终目标。神经解码的进展,以及非侵入式机械臂控制的实际应用,都将对非侵入式神经机器人的最终发展产生重大影响。

一方面,利用新的传感和机器学习技术,贺斌和他的实验室团队能够获取大脑深处的信号,实现对机械臂的高分辨率控制。

另一方面,通过非侵入式神经成像和一种新的连续追踪范式,他们正在攻克EEG信号带来的噪音,从而显著改善基于脑电图的神经解码,并进一步推进实时连续的2D机器人设备控制。

640?wx_fmt=jpeg

创新框架:传统方法学习能力提高60%,连续追踪学习能力增强5倍

这是贺斌他们第一次通过人类受试者使用非侵入式脑机接口来控制在计算机屏幕上连续追踪光标的机械臂。

此前,非侵入式脑机接口只能以不稳定、离散的方式来控制机械臂移动光标,好像机械臂在努力“跟上”大脑的命令。而在贺斌等研究人员的努力下,机械臂的行动正在变得更加流畅、连续。

脑电图系统的基本流程是先经由电极帽等采集装置获取到大脑皮层的信号,并将其转换为数字信号,再选择最优导联的信号进行全局参数设置、预处理、特征提取和分类等信号处理任务,最终通过控制器实现对机械臂等外部装置的控制。

而在本文介绍的新研究中,研究人员们建立了一个新的框架,采用一种人机相互适应的训练方式,通过定向提高脑机接口的用户学习和机器学习能力,改进脑机接口的“大脑”和“计算机”部分,并通过脑电图(EEG)源成像提高非侵入式神经数据的空间分辨率。

由于人脑活动随着时间和空间的变化而改变,因此要对大脑神经进行成像,需要使用高时间和高空间分辨率的工具。

本次研究采用的脑电图源成像(ESI,EEG source imaging)技术是通过头皮的电位分布反推颅内皮层的电位分布,并根据头颅解剖特点采用限差分头模融入头颅空间,来减轻噪音影响,预测大脑皮层活动。

相比传统传感技术, EIS技术能提供更高的时间分辨率和空间分辨率,给离线神经解码领域带来了令人惊喜的进展,不过,这些方法还需经进一步的验证。

640?wx_fmt=jpeg▲基于源连续追踪脑机接口机械臂框架

以此为基础,研究人员们研发了实时ESI平台,并使用了一种连续追踪(CP,continuous pursuit)的方法进行训练,经实验,其框架使得传统离散试验(DT,Discrete Trial)的脑机接口学习能力提高了近60%,连续追踪的脑机接口学习能力增强500%以上。

实时ESI的实用性还进一步为基于传统传感器的脑机接口用户在连续追踪脑机接口控制方面带来10%的改进。

基于上述改进,研究人员们展示了机械臂的连续控制能力,其水平与虚拟光标控制的水平几乎相同,突出了非侵入式脑机接口转化为用于实际任务和临床应用的真实设备的潜力。

640?wx_fmt=jpeg

迄今为止,该技术已经在68个健全的人类受试者中进行了测试(每个受试者多达10次),测试内容包括虚拟设备控制和机械臂控制。

该研究团队表示,该技术能直接适用于患者,同时他们计划在不久的将来进行临床试验。

“尽管使用非侵入性信号存在技术挑战,但我们将会一直致力于把这种安全且经济的技术,带给可以从中受益的人。”贺斌说,“这项努力是非侵入式脑机接口领域迈出的重要一步,脑机接口技术未将有机会成为无处不在的辅助技术,就像智能手机一样。

这项研究得到了美国国家补足和综合健康中心(National Center for Complementary and Integrative Health)、国家神经疾病和中风研究院(National Institute of Neurological Disorders and Stroke)、国家生物医学成像和生物工程研究所(National Institute of Biomedical Imaging and Bioengineering)和国家心理卫生研究所(National Institute of Mental Health)的支持。

结语:非侵入式脑机接口迈出重要一步

尽管目前侵入式神经解码领域的目标动态追踪能力要普遍高于非侵入式,但对于大多数人来说,非侵入式脑机接口仍然是更安全、更容易接受的选择。

此次连续追踪脑机接口范例成功提升了脑机接口的性能和效率,展示了高度灵活的机械臂操控计算机光标技能。如果这项技术能够走向成熟,将会给瘫痪患者和手部、手臂部位运动障碍患者们的生活带来极大的便利。

同时,随着研究人员对它进一步深入的研究和开发,它在将来也许会更普及地应用到普通人的生活中。我们不妨大胆设想一下,或许未来有一天,人们可以用意念实时控制计算机光标和打字,彻底解放双手、抛弃键盘。

论文链接:

https://robotics.sciencemag.org/content/4/31/eaaw6844

文章来源:Carnegie Mellon University College of Engineering

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491419.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI芯片的长征之路:挑战与机遇

来源: 半导体行业观察前言:笔者有幸受邀在六月初北京举行的首届亚洲AI硬件峰会(AI Hardware Summit Asia)上发表了开幕主题演讲,与全世界的AI硬件专家分享了我对行业的一些看法和想法。演讲以英文形式进行,…

make_moons函数

生成半环形数据 sklearn.datasets.make_moons(n_samples100, shuffleTrue, noiseNone, random_stateNone) 参数: n_samples : 整数型, 可选,默认为100,产生的样本点的数量shuffle : 布尔型,可选填 (默认为True),是否…

阿里巴巴罗汉堂发布最关乎人类未来的十大问题

来源:中国新闻网中新网杭州6月25日电 (记者 魏晞)25日,阿里巴巴倡议成立的罗汉堂发布最关乎人类未来的十大问题。200多位来自全球的顶尖学者、政界、企业界负责人应邀在杭州“西湖论剑”,闭门研讨十大问题,其中包括6位诺贝尔经济学…

Drive.ai轰然倒下:曾估值两亿,吴恩达夫妇站台,苹果将接盘部分可用技术人才...

来源:大数据文摘曾经估值两个亿美元,吴恩达夫妇亲自站台,风极一时的无人车创业公司Drive.ai轰然倒塌。本月20日,总部位于加州山景城的 Drive.ai 公司被证实已经向一家州政府机构递交了通知,表明即将关闭,并…

PyMC3实现贝叶斯神经网络

转自https://blog.csdn.net/jackxu8/article/details/71308390#commentBox 源地址https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html PyMC3中的贝叶斯深网络 生成数据 产生一个简单的线性不可分的二分类问题的模拟数据。 %matplotlib inline import pymc…

Dynamics CRM 开启图表的3D效果展示

CRM中的图表在我们的业务场景中用的很多,用户可以根据自己的实际需求来构建图表查看数据。我们平时看到的图表都是平面的,像下图中的这种,那有没有一种方式可以让展示3D效果看起来更立体呢,答案是可以的。 这里就以上面的图表为例…

“CRISPR婴儿”计划疯狂重启 顶级科学家们表示无力阻止

来源: 生物通新的“CRISPR婴儿”计划启动,顶级科学人士感到震惊,却表示他们无力阻止它6月10日,俄罗斯分子生物学家Denis Rebrikov表示计划开展基因编辑婴儿实验,并公开了他将跨越“红线”的研究计划。两位有影响力的学…

PyMC3和Lasagne构建神经网络(ANN)和卷积神经网络(CNN)

转自http://www.sohu.com/a/162460147_505915 源地址https://twiecki.io/blog/2016/07/05/bayesian-deep-learning/ 今天,我们将使用Lasagne构建一个更有趣的模型,这是一个灵活的Theano图书馆,用于构建各种类型的神经网络。你可能知道&…

OpenCV高斯滤波GaussianBlur

图像处理中,常用的滤波算法有均值滤波、中值滤波以及高斯滤波等。 三种滤波器的对比滤波器种类基本原理特点均值滤波使用模板内所有像素的平均值代替模板中心像素灰度值易收到噪声的干扰,不能完全消除噪声,只能相对减弱噪声中值滤波计算模板内…

(附视频) | AI奠基人、美国AI科学家特伦斯谈深度学习​

来源:笑看国际风云特伦斯 谢诺夫斯基(Terrence Sejnowski):世界十大人工智能科学家之一,还是美国仅3位在世的‘四院院士’之一,同时兼任全球人工智能顶级会议NIPS基金会主席。1989年,特伦斯加入…

OpenCV图像金字塔

图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采…

带你深入理解图灵机--天才所在的时代

来源:人机与认知实验室这几年由于区块链的大热,以太坊独特的solidity语言实现智能合约功能,图灵完备这个词走进大家的视线。没有计算机专业知识的同学其实很难理解这个词的意思,其实计算机专业的同学都没有深入理解图灵机&#xf…

用PyMC3进行贝叶斯统计分析(代码+实例)

问题类型1:参数估计 真实值是否等于X? 给出数据,对于参数,可能的值的概率分布是多少? 例子1:抛硬币问题 硬币扔了n次,正面朝上是h次。 参数问题 想知道 p 的可能性。给定 n 扔的次数和 h …

华为: 即将发布5G+VR的颠覆式智能眼镜

来源:VR每日必看6月27日MWC19上海期间,华为手机业务总裁何刚在全球终端峰会发表演讲,提及华为终端在5G时代的全场景战略是“18N”。“1”就是华为手机,“8”则囊括了TV、平板、PC、耳机、车机、手表、眼镜、音响八项终端产品&…

OpenCV的数据类型——基础数据类型

OpenCV有很多数据类型,从组织结构的角度来看,OpenCV的基础类型类型主要分为三类。第一类是直接从C原语中继承的基础数据类型;第二类是辅助对象;第三类是大型数据类型。本文主要介绍OpenCV的基础数据类型。 目录 Point类 Scalar…

Cell:重大突破!三位学术大咖,打造全新“DNA显微镜”

来源:中国生物技术网传统上,科学家们使用光、X射线和电子来观察组织和细胞的内部。如今,科学家们能够在整个大脑中追踪线状的神经纤维,甚至可以观察活的小鼠胚胎如何产生原始心脏中的跳动细胞。但是这些显微镜无法看到的是&#x…

Science Robotics近日刊登CMU重大突破,无需手术,普通人就能用意念操控机械臂!...

来源:机器人大讲堂导读顶尖学术期刊《科学》旗下的Science Robotics本月19号刊登了脑机接口(BCI)领域的一项突破成果。美国卡内基梅隆大学的贺斌教授带领其研究团队与明尼苏达大学合作,成功开发出第一款非侵入式的意念控制机械臂&…

一文读懂全球自动驾驶传感器市场格局!

来源:智驾未来自动驾驶汽车作为汽车未来的重要发展方向,成为汽车零部件产业链的重要增长点。国内外的汽车零部件供应商积极布局自动驾驶传感器领域,在车载摄像头、毫米波雷达和激光雷达三大核心部件,以及产业链上下游的拓展为零部…

MIT对话马斯克:关于自动驾驶、爱和未来世界|厚势汽车

来源:价值中国编译不论是在新能源汽车、私人航空航天、共通交通、还是在人工智能领域,埃隆马斯克天马行空的创想和脚踏实地的奋斗让人震惊不已。简直就是一个活着得的非物质文化遗产。马斯克在全球范围内收割了无数粉丝。不论是企业家、工程师、科技研究…

OpenCV矩阵操作

矩阵类的成员函数可以进行很多基本的矩阵操作,在之前已经介绍过。除此之外,也有很多操作被表示为“友元”函数,它们的输入为矩阵类型,或者输出为矩阵类型,或者输入输出同为矩阵类型。下面将对这些函数及其参数进行详细…