Intel和IBM押重注的神经模态计算,会给行业带来什么样的变化

640?wx_fmt=jpeg

Intel发布的Pohoiki Beach加速卡,含有64块Loihi芯片


来源: 半导体行业观察


上周,Intel发布了基于其神经模态(neuromorphic)计算芯片Loihi的加速卡Pohoiki Beach,该加速卡包含了64块Loihi芯片,共含有八百多万个神经元。继IBM发布True North、Intel发布Loihi之后,Pohoiki Beach又一次让神经模态计算走进了聚光灯下。本文将为读者重点介绍神经模态计算芯片的发展前景以及市场情况——事实上除了IBM和Intel之外,一些优秀的初创公司如aiCTX等也正在积极探索超低功耗神经模态芯片在不同领域的应用,我们认为在未来几年内随着AI+IoT的发展,神经模态计算将会迎来一波新的热潮。


让IBM和Intel争相投资的神经模态计算究竟是什么


神经模态计算是一种从生物神经元获得启发的计算方式。在生物学中,神经细胞之间的工作原理大致可以概括为:当一个神经元中积累的电荷数量足够多时,将会发射出脉冲,该脉冲一方面清空了发射脉冲神经元内部的电荷,另一方面脉冲会沿着神经突触进入其他神经元,并在其他神经元中积累电荷,如此反复。大量神经元和突触之间形成的网络就是神经网络,而脉冲可以认为是神经元之间传递信息的方法;另一方面神经元A和神经元B突触之间连接的强度则决定了当神经元A发射脉冲时,会有多少电荷进入神经元B。而神经模态计算可以认为就是重现了这样的一个过程,它使用电路来实现神经元和神经突触以及神经网络,并且模仿生物神经元之间使用脉冲通信的工作方式。


640?wx_fmt=jpeg


提起神经网络,大家一定非常熟悉,因为今天得到广泛应用的深度学习人工智能正是基于神经网络。那么神经模态计算中的神经网络和深度学习中的神经网络是否是一个东西?从原理上说,两者是一致的,两者都是在模仿生物神经元之间连接和通信的过程,区别在于深度学习中的神经网络是从较抽象的角度来描述生物神经网络,而神经模态计算则更贴近真正的生物神经网络。举例来说,深度学习的神经网络中也有神经元以及神经元激活的概念,在前馈过程中每个神经元的输出值即该过程中该神经元被激活的次数,而神经元之间的连接强度则用网络权重来表征,每个神经元的输出乘以网络权重再传播给下一层的神经元,因此可以认为深度学习中的神经网络是使用数学计算的方法在模仿生物神经系统。与之相对,神经模态计算的前馈过程中,每个神经元电路模块每被激活一次就会真的发射出一个电脉冲(而不是直接输出整个前馈过程中被激活的)并传播给相连的其他神经元,因此可以认为神经模态计算是在真正重现生物神经系统的物理过程。


为什么神经模态计算得到了这么多重视?目前来看,首先人类的大脑还有太多未解之谜,今天的深度学习仅仅能实现人类大脑极小一部分的功能,距离人类的智能还有非常远的距离,而使用神经模态计算直接模仿神经元系统在人工神经元数量足够多时,或许有希望能实现比起深度学习更好的效果,更接近人类的大脑。此外,从实际的应用角度出发,目前深度学习计算在部署上遇到的困难是能效比和延迟问题,在对于功耗要求非常低的领域(如物联网等)以及对于延迟要求非常高的领域(如无人驾驶等)部署深度学习会遇到很大的挑战。而神经模态计算则可以解决这两大问题。首先,深度学习由于是从数学上模仿神经系统,因此神经元被激活的次数事实上对于计算的功耗改变不大。例如神经元被激活两次还是四次,在深度学习里无非是该神经元的输出是2还是4,这只是一个乘法运算的输入改变,几乎不改变乘法计算的功耗。但是,如果使用神经模态计算,那么神经元被激活两次相比神经元被激活四次可以少发射两次脉冲,这样就节省了功耗,因此神经模态计算也可以说是利用了其“事件驱动”的特性来降低功耗。因此,神经模态计算的一大优势就是其计算功耗与输入有关,在输入不会激活大量神经元的情况下,其功耗可以做到非常低;相反使用深度学习则无论神经元被激活的程度,其功耗几乎是一样的。对于物联网应用来说,许多场景或许99%以上的时间并没有事件发生,神经模态计算可以利用这样的规律,仅仅在需要的时候激活神经元消费能量来完成事件识别,而在其他没有事件的时候由于神经元未被激活因此功耗很低,从而实现远低于深度学习芯片的平均功耗。另一个神经模态计算的优势是存算一体,这是因为神经模态计算并非常规的冯诺伊曼架构,神经模态计算芯片一般也不会搭配DRAM使用,而是直接将信息储存在了神经元里(相当于生物神经网络中每个神经元储存的电荷)。这样就避免了内存墙带来的功耗和延迟问题,因此神经模态计算芯片的延迟和能效比都会好于传统的深度学习。


神经模态芯片发展的方向


神经模态芯片的发展方向首先是规模化,即扩大神经元的规模,这也是Intel和IBM等大厂主要押注的方向。如果我们回顾深度学习的发展历程,我们会发现其实神经网络的原理早在上世纪60年代就已初见雏形,但是由于训练数据量不够以及算力不够,因此直到2012年才被人们重新发现,并且发现了众多之前完全没有想到的应用场景和市场。对于神经模态计算,大厂押注的也是类似的情况:神经模态计算的原理看起来是正确的(尤其是今天深度学习已经获得了很大的成功,那么基于相似原理的神经模态计算应该不会很不靠谱),目前或许只要把神经元的数量和神经突触连接数量跨过一个阈值(就像当年AlexNet跨过网络深度的门槛一样),那么神经模态计算就有可能爆发出巨大的能量,甚至远超之前的想象。这次Intel发布的超过八百万神经元的Pohoiki Beach系统显然就是在往规模化的方向大力发展。根据Intel的官方消息,下一步将继续发布神经元数量更大的Pohoiki Spring计划,可见Intel是在往大规模神经模态计算的方向大力推进。


除了发展规模化之外,另一个方向就是利用神经模态计算低功耗和低延迟的特点并进一步优化芯片设计来开发出高能效比低延迟的芯片。这类芯片或许神经元数量不多,但是可以实现非常低的功耗和非常好的能效比,从而可以部署在传统深度学习无法部署的场景。事实上,目前如何高效训练大规模神经模态神经元的算法还没有找到,因此在现有训练框架的基础下,或许优先把能效比做到极致是比把神经元数量做大更接地气的方向。瑞士苏黎世理工大学的Giacomo Indiveri教授就是这个方向的代表性人物,研究组在十数年内已经发表了多篇电路和系统论文,其研发的芯片作为欧洲神经模态计算研究的代表性工作在2018年ISSCC主题演讲中被重点介绍。


640?wx_fmt=jpeg

Indiveri组的神经模态计算芯片在2018年ISSCC主题演讲中被重点提及


神经模态芯片如何商业化落地


神经模态芯片近几年来的落地方向按照神经元规模可以分成两类。


对于Intel和IBM这类在大规模神经元领域大量投资的公司,事实上也并不急着在几年内让神经模态芯片系统落地,而是希望在这几年内把神经模态计算的研究、生态先做起来,等到神经模态计算研究取得突破(例如神经元跨过了某个阈值或者新的训练算法出现,在一些关键领域能解决其他方法无法解决的问题)时就能获得先机。在近几年,大规模神经模态计算芯片的主要应用估计还是在研究上,包括作为脑科学研究(模拟大脑神经系统)系统平台供各大高校和研究机构使用。另外,Intel和IBM估计也在积极寻找一些传统图灵机算法和冯诺伊曼架构难以高效处理但适合神经模态计算的问题(例如优化问题等),和其他有需求的行业公司合作,以此作为神经模态计算的初步落地尝试。


另一方面,在中等规模神经元规模、主打低功耗的神经模态芯片方向上,最近兴起的物联网将会成为最佳的落地应用。物联网配合人工智能将会给社会带来巨大的变化,然而目前基于深度学习的芯片难以实现物联网对于低功耗的需求(小于毫瓦级的功耗)。这时候就是神经模态芯片大展身手的地方。在这个方向上,技术和商业化都较领先的是位于瑞士初创公司的aiCTX,该公司的技术来自于前述苏黎世理工大学Indiveri组的研究,其芯片平均功耗可以到达微瓦数量级,目前主打的场景就是超低功耗物联网场景,包括边缘视觉应用(安防、机器人等场景)、可穿戴设备等等。不久前aiCTX刚发布了含有一百万神经元的芯片DynapCNN,并且获得了CES Asia 2019颁发的创新奖。


在中国,神经模态芯片也得到了国家和业界的重视。在研究方面,清华类脑计算中心做出了卓越的贡献,其工作发表在全球顶级期刊和会议上。上海也于今年建立了上海脑科学与类脑研究中心,神经模态计算是该中心的重点方向之一。在商业化方面,清华类脑计算中心孵化的初创公司灵汐科技在今年发布了自主研发的“天机二代”芯片系统,使用众核存算一体架构,具有高速度、高性能、低功耗的特点。相比国外同行,我国的神经模态计算在最近几年得到了来自国家非常高的重视,相信在未来几年内将会有全球领先的成果诞生。


640?wx_fmt=jpeg



640?wx_fmt=jpeg

张亚勤、刘慈欣、周鸿祎、王飞跃、约翰.翰兹联合推荐


这是一部力图破解21世纪前沿科技大爆发背后的规律与秘密,深度解读数十亿群体智能与数百亿机器智能如何经过50年形成互联网大脑模型,详细阐述互联网大脑为代表的超级智能如何深刻影响人类社会、产业与科技未来的最新著作。


《崛起的超级智能;互联网大脑如何影响科技未来》2019年7月中信出版社出版。刘锋著。了解该著作详情请点击:【新书】崛起的超级智能:互联网大脑如何影响科技未来


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491097.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV学习(二十二) :反向投影:calcBackProject(),mixChannels()

OpenCV学习(二十二) :反向投影:calcHist(),minMaxLoc(),compareHist() 参考博客: 反向投影backproject的直观理解 opencv 反向投影 颜色直方图的计算、显示、处理、对比及反向投影 一、概述 1、官方解释:反向投影是一种记录给定图像中的像…

美国正式宣告将在月球建立永久存在基地

来源:凤凰新闻央视网消息:7月20号是人类首次载人登陆月球50周年纪念日,美国公布了“阿尔忒弥斯计划”的官方标志图案,正式宣告将在月球建立永久存在基地。美国媒体直呼,美国要“占领”月球了。1969年,美国的…

一文看懂5G芯片背后的明争暗斗

来源:鲜枣课堂6月6日工信部正式发放5G商用牌照之后,国内5G网络建设的步伐大幅加快了。越来越多的城市出现了5G基站和5G信号,5G离我们的距离更近了。面对激动人心的5G,我们普通用户最关心的问题,当然是什么时候才能用上…

OpenCV学习(二十三) :模板匹配:matchTemplate(),minMaxLoc()

OpenCV学习(二十三) :模板匹配:matchTemplate() 1、概述 模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。 它是图像处理中最基本、最常用的匹配方…

CSS3实现图形曲线阴形和翘边阴影

首先,来看看完成之后的效果图: 实现原理 ①曲线阴影实现: 多个阴影重叠,就是正常阴影曲线阴影 正常情况下,有个矩形有正常的阴影,作为主投影,这时候再定义一个有一定弧度圆角的圆角矩形&#xf…

腾飞资本任溶 :互联网大脑,新的天方夜谭?—评《崛起的超级智能》

作者:任 溶 腾飞资本董事长,城市大脑创新合伙人基金管理合伙人因为我做科技产业投资工作,投资领域涉及互联网等新经济、新模式和新技术等,所以这几年总是听到一些言论,诸如“互联网已死”,或者“互联网红利…

OpenCV学习(二十四 ):角点检测(Corner Detection):cornerHarris(),goodFeatureToTrack()

OpenCV学习(二十四 ):角点检测(Corner Detection):cornerHarris(),goodFeatureToTrack() 参考博客: Harris角点检测原理详解 Harris角点检测原理及C实现 OpenCV亚像素角点cornerSubPixel()源代码分析 Taylor公式(泰勒公式&#x…

无人驾驶技术的7大典型应用场景

来源 | 数据观综合无人驾驶风口来临,引得各方资本竞相追逐。据业内预测,2019年到2020年无人驾驶L3(条件自动)级别的汽车将实现量产化,2022年后部分企业将实现L4(高度自动)量产,若要实…

数字图像处理学习笔记(一):特征检测和匹配概述

数字图像处理学习笔记(一):特征检测和匹配概述 参考博客: 特征点的匹配SIFT特征详解数字图像处理学习笔记(二):SIFT(尺度不变特征变换)算法 1、特征点概述 如何高效且…

数字图像处理学习笔记(二):SIFT(尺度不变特征变换)算法

数字图像处理学习笔记(二):SIFT(尺度不变特征变换)算法 一、概述: 提到特征点算法,首先就是大名鼎鼎的SIFT算法了。SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变…

微软向马斯克的人工智能公司OpenAI投资10亿美元

来源: 新浪财经新浪美股讯微软(Microsoft)周一宣布,将向埃隆-马斯克(Elon Musk)的OpenAI投资10亿美元,打造能够处理更复杂任务的人工智能。根据声明,通过合作,两家公司将建立新的Azure AI超级计算技术,微软将成为OpenA…

数字图像处理学习笔记(三):ORB算法(尺度不变特征变换)Oriented FAST and Rotated BRIEF

数字图像处理学习笔记(三):ORB算法(尺度不变特征变换)Oriented FAST and Rotated BRIEF 一、概述 参考:特征点匹配特征检测方法汇总 ORB的全称是Oriented FAST and Rotated BRIEF,是目前来说…

华为:对部分顶尖学生实行年薪制 最高200万元

来源:EETOP7月23日上午消息,据华为总裁办签发的电子邮件,华为对部分2019届顶尖学生实行年薪制管理。华为以电邮通知【2019】068号文发布了8名天才少年的年薪方案,这8名人员全部为2019届应届顶尖学生,其年薪的最低限为8…

matplotlib使用GridSpec自定义子图位置 (非对称的子图)

上图的结构可以用一下两种方式画: import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpecfig plt.figure(1) gs GridSpec(3, 3)ax1 plt.subplot(gs[0, :]) ax2 plt.subplot(gs[1, :2]) ax3 plt.subplot(gs[1:, 2]) ax4 plt.subplot(gs[…

大脑简史(1)-历史上的大事件

来源:人机与认知实验室能够上天入地,却不知道自己的大脑,笔者认为这是很多人的疑惑。随着科技的发展,我们能够延伸到的地方越来越多,无论是伸手不见五指的海底,还是扶摇直上九万里的浩渺星空,都…

作业3词频统计

(1). 实现一个控制台程序,给定一段英文字符串,统计其中各个英文单词(4字符以上含4字符)的出现频率。 答: 从文件读取遍历字符串大写转小写将句子分隔成一个个单词判断是否为单词计算单词出现的频率预估时间10minutes10…

MATLAB报错Invalid ADAPTORNAME specified. Type 'imaqhwinfo' for a list of available ADAPTORNAMEs. Image

MATLAB报错Invalid ADAPTORNAME specified. Type imaqhwinfo for a list of available ADAPTORNAMEs. Image acquisition adaptors may be available as downloadable support packages. Open Support Package Installer to install additional vendors. 这时需要安装两个安装…

陈天奇:十年机器学习科研之路(附链接)

来源:深度学习自然语言处理链接:https://zhuanlan.zhihu.com/p/74249758导读十年前,MSRA的夏天,刚开始尝试机器学习研究的我面对科研巨大的不确定性,感到最多的是困惑和迷茫。十年之后,即将跨出下一步的时候…

QT示例:基于TCP 点对多Socket通讯(server,clients)

QT示例:基于TCP 点对多通讯(server,clients)一、服务器server二、客户端Client下载:基于TCP 点对多Socket通讯 一、服务器server 因为对于客户端来说,只能连接一个服务器。而对于服务器来说,它是面向多连…

MATLAB GUI的CreateFcn如何创建

看MATLAB关于GUI代码的时候发现有一些function _CreateFcn(hObject, eventdata, handles)函数,那么这类函数是如何创建出出来的呢? 首先在MATLAB中输入guide,打开其中一个GUI文件,现在随便打开一个我之前创建好的GUI:…