题意:有n棵树在水平线上,给出每棵树的坐标和高度,然后向左倒的概率和向右倒的概率,和为1,然后给出了m个蘑菇的位置,每一个蘑菇都有一个魔法值,假设蘑菇被压死了,也就是在某棵树[a[i] - h[i], a[i]) 或 (a[i], a[i] + h[i]]范围内。魔法值就没有了。仅仅有生存下来的蘑菇才有魔法值,问生存下来的蘑菇的魔法值的期望。
题解:能够看到n和m的范围是1e5。而坐标范围是1e9。所以肯定要离散化,然后更新每一个区间的概率值,单点查询每一个蘑菇所在区间的概率值乘其魔法值。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int N = 100005;
int n, m, a[N], h[N], b[N], z[N], c[N << 2];
double tree[N << 4], flag[N << 4], pl[N], pr[N];
map<int, int> mp;void pushdown(int k) {if (flag[k]) {tree[k * 2] *= tree[k];tree[k * 2 + 1] *= tree[k];flag[k * 2] = flag[k * 2 + 1] = 1;tree[k] = 1.0;flag[k] = 0;}
}void build(int k, int left, int right) {flag[k] = 0;tree[k] = 1.0;if (left != right) {int mid = (left + right) / 2;build(k * 2, left, mid);build(k * 2 + 1, mid + 1, right);}
}void modify(int k, int left, int right, int l1, int r1, double x) {if (l1 <= left && right <= r1) {tree[k] *= x;flag[k] = 1;return;}pushdown(k);int mid = (left + right) / 2;if (l1 <= mid)modify(k * 2, left, mid, l1, r1, x);if (r1 > mid)modify(k * 2 + 1, mid + 1, right, l1, r1, x);
}double query(int k, int left, int right, int pos) {if (left == right)return tree[k];pushdown(k);int mid = (left + right) / 2;if (pos <= mid)return query(k * 2, left, mid, pos);elsereturn query(k * 2 + 1, mid + 1, right, pos);
}int main() {scanf("%d%d", &n, &m);mp.clear();int cnt = 0;for (int i = 1; i <= n; i++) {scanf("%d%d%lf%lf", &a[i], &h[i], &pl[i], &pr[i]);pl[i] /= 100.0, pr[i] /= 100.0; c[++cnt] = a[i];c[++cnt] = a[i] - h[i];c[++cnt] = a[i] + h[i];}for (int i = 1; i <= m; i++) {scanf("%d%d", &b[i], &z[i]);c[++cnt] = b[i];}sort(c + 1, c + 1 + cnt);cnt = unique(c + 1, c + 1 + cnt) - (c + 1);for (int i = 1; i <= cnt; i++)mp[c[i]] = i;build(1, 1, cnt);for (int i = 1; i <= n; i++) {modify(1, 1, cnt, mp[a[i] - h[i]], mp[a[i]] - 1, 1.0 - pl[i]);modify(1, 1, cnt, mp[a[i]] + 1, mp[a[i] + h[i]], 1.0 - pr[i]);}double res = 0;for (int i = 1; i <= m; i++)res += z[i] * query(1, 1, cnt, mp[b[i]]);printf("%lf\n", res);return 0;
}