神经科学如何影响人工智能?看DeepMind在NeurIPS2020最新《神经科学人工智能》报告,126页ppt...

来源:专知

Jane Wang是DeepMind神经科学团队的一名研究科学家,研究元强化学习和受神经科学启发的人工智能代理。她的背景是物理、复杂系统、计算和认知神经科学。

Kevin Miller是DeepMind神经科学团队的研究科学家,也是伦敦大学学院的博士后。他目前正在研究如何理解mice和机器的结构化强化学习。

Adam Marblestone是施密特期货创新公司(Schmidt Futures innovation)的研究员,曾是DeepMind的研究科学家,此前他获得了生物物理学博士学位,并在一家脑机接口公司工作。

Where Neuroscience Meets AI

地址:

https://sites.google.com/view/neurips-2020-tutorial-neurosci/home

大脑仍然是唯一已知的真正通用智能系统的例子。对人类和动物认知的研究已经揭晓了一些关键的见解,如并行分布式处理、生物视觉和从奖赏信号中学习的想法,这些都极大影响了人工学习系统的设计。许多人工智能研究人员继续将神经科学视为灵感和洞察力的来源。一个关键的困难是,神经科学是一个广泛的、异质的研究领域,包括一系列令人困惑的子领域。在本教程中,我们将从整体上对神经科学进行广泛的概述,同时重点关注两个领域——计算认知神经科学和电路学习的神经科学——我们认为这两个领域对今天的人工智能研究人员尤其相关。最后,我们将强调几项正在进行的工作,这些工作试图将神经科学领域的见解引入人工智能,反之亦然。

概要:

  1. 概述 Introduction / background (15 min)

  2. 认知神经科学 Cognitive neuroscience (30 min)

  3. 学习电路与机制神经科学, Learning circuits and mechanistic neuroscience (30 min)

  4. 交叉最新进展 Recent advancements at the interp (25 min)

https://sites.google.com/view/neurips-2020-tutorial-neurosci/home

参考文献:

Section 1 - Cognitive Neuroscience

Textbooks

  • Gazzaniga, M., Ivry, R. B., & Mangun, G. R. (2018). Cognitive Neuroscience. W.W. Norton & Company.

  • O’Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience. MIT Press.

  • Abbot, L. F., & Dayan, P. (2001). Theoretical neuroscience. MIT Press.

Reviews: Innateness

  • Zador, A. M. (2019). A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications.

  • Pinker, S. (2003). The Language Instinct: How the Mind Creates Language. Penguin UK.

  • Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems

Reviews: Vision

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences,

  • Andersen, R. A., & Buneo, C. A. (2002). Intentional Maps in Posterior Parietal Cortex. Annual Review of Neuroscience .

  • Whitwell, R. L., Milner, A. D., & Goodale, M. A. (2014). The Two Visual Systems Hypothesis: New Challenges and Insights from Visual form Agnosic Patient DF. Frontiers in Neurology.

  • DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences.

  • Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences.

  • Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Phil. Trans. Royal Society of London: B.

Reviews: Memory

  • Squire, L. R. (2009). The legacy of patient HM for neuroscience. Neuron.

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review.

  • O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. Trends in Cognitive Sciences.

Reviews: Planning

  • Unterrainer, J. M., & Owen, A. M. (2006). Planning and problem solving: from neuropsychology to functional neuroimaging. Journal of Physiology.

  • Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron

  • Miller, K. J., & Venditto, S. J. C. (2021). Multi-step planning in the brain. Current Opinion in Behavioral Sciences

Other works cited

  • Akrami, A., Kopec, C. D., Diamond, M. E., & Brody, C. D. (2018). Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature.

  • Andersen, R. A., Andersen, K. N., Hwang, E. J., & Hauschild, M. (2014). Optic ataxia: from Balint’s syndrome to the parietal reach region. Neuron.

  • Balaguer, J., Spiers, H., Hassabis, D., & Summerfield, C. (2016). Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network. Neuron.

  • Chomsky, N. (1976). Reflections on Language. Fontana Press.

  • Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science.

  • Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain.

  • Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron.

  • Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience.

  • Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science.

  • Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature.

  • Fernando, C., Sygnowski, J., Osindero, S., Wang, J., Schaul, T., Teplyashin, D., Sprechmann, P., Pritzel, A., & Rusu, A. (2018). Meta-learning by the Baldwin effect. Proceedings of the Genetic and Evolutionary Computation Conference.

  • Gabrieli, J. D., Corkin, S., Mickel, S. F., & Growdon, J. H. (1993). Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer’s disease and in global amnesia. Behavioral Neuroscience.

  • Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature.

  • Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., & Hassabis, D. (2016). Hybrid computing using a neural network with dynamic external memory. Nature.

  • Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., Feng, G., & Svoboda, K. (2014). Flow of cortical activity underlying a tactile decision in mice. Neuron.

  • Holmes, G. (1918). Dsturbances of visual orientation. British Journal of Ophthalmology

  • Hopcraft, R., Holdo, R., Mwangomo, E., Mduma, S., Thirgood, S., Borner, M., Fryxell, J., Olff, J., & Sinclair, A. (2015). Why are wildebeest the most abundant herbivore in the Serengeti ecosystem? In A. Sinclair, K. Metzger, S. Mduma, & J. Fryxell (Eds.), Serengeti IV: Sustaining biodiversity in a coupled human-natural system. University of Chicago Press.

  • James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., & Goodale, M. A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neuroscience

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM.

  • Kurth-Nelson, Z., Economides, M., Dolan, R. J., & Dayan, P. (2016). Fast Sequences of Non-spatial State Representations in Humans. Neuron.

  • Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior.

  • Miller, K. J., Botvinick, M. M., & Brody, C. D. (2017). Dorsal hippocampus contributes to model-based planning. Nature Neuroscience.

  • Milner, A. D., Perrett, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., Bettucci, D., Mortara, F., Mutani, R., & Terazzi, E. (1991). Perception and action in “visual form agnosia.” Brain.

  • Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia.

  • Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiology.

  • Naselaris, T., Bassett, D. S., Fletcher, A. K., Kording, K., Kriegeskorte, N., Nienborg, H., Poldrack, R. A., Shohamy, D., & Kay, K. (2018). Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences.

  • Neisser, U. (2014). Cognitive Psychology

  • Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychological Review.

  • Pflugshaupt, T., Gutbrod, K., Wurtz, P., von Wartburg, R., Nyffeler, T., de Haan, B., Karnath, H.-O., & Mueri, R. M. (2009). About the role of visual field defects in pure alexia. Brain.

  • Pritzel, A., Uria, B., Srinivasan, S., Puigdomènech, A., Vinyals, O., Hassabis, D., Wierstra, D., & Blundell, C. (2017). Neural Episodic Control. arXiv [cs.LG]

  • Russell, S., & Norvig, P. (2002). Artificial Intelligence: A Modern Approach

  • Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Phil. Trans. Royal Society of London: B.

  • Shallice, T. (1982). Specific impairments of planning. Phil. Trans. Royal Society of London: B.

  • Shen, E. H., Overly, C. C., & Jones, A. R. (2012). The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends in Neurosciences

  • Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature.

  • Starck, J. M., Ricklefs, R. E., & Others. (1998). Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press.

  • Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2019). Distributed coding of choice, action, and engagement across the mouse brain. Nature.

  • Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., & Harris, K. D. (2019). High-dimensional geometry of population responses in visual cortex. Nature.

  • Szwed, M., Dehaene, S., Kleinschmidt, A., Eger, E., Valabrègue, R., Amadon, A., & Cohen, L. (2011). Specialization for written words over objects in the visual cortex. NeuroImage.

  • Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science.

  • van Opheusden, B., Galbiati, G., Z. Bnaya Li, Y., & Ma, W. J. (2017). Modeling Decision Tree Search in a Two-Player Game. Proceedings of the 39th Annual Meeting of the Cognitive Science Society.

  • Vesia, M., & Crawford, J. D. (2012). Specialization of reach function in human posterior parietal cortex. Experimental Brain Research.

  • Vikbladh, O., Meager, M. R., King, J., Blackmon, K., Devinsky, O., Shohamy, D., Burgess, N., & Daw, N. D. (2018). Two Sides of the Same Coin: The Hippocampus as a Common Neural Substrate for Model-Based Planning and Spatial Memory. Neuron

  • Wada, Y., & Yamamoto, T. (2001). Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region. Journal of Neurology, Neurosurgery, and Psychiatry.

  • Wallace, D. J., Greenberg, D. S., Sawinski, J., Rulla, S., Notaro, G., & Kerr, J. N. D. (2013). Rats maintain an overhead binocular field at the expense of constant fusion. Nature.

  • Williams, S. C. P., & Deisseroth, K. (2013). Optogenetics. PNAS.

  • Wimmer, R. D., Ian Schmitt, L., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature.

  • Zoccolan, D., Kouh, M., Poggio, T., & DiCarlo, J. J. (2007). Trade-off between object selectivity and tolerance in monkey inferotemporal cortex. J Neuroscience

  • Zoccolan, D., Oertelt, N., DiCarlo, J. J., & Cox, D. D. (2009). A rodent model for the study of invariant visual object recognition. PNAS

Section 2 - Circuits and Mechanistic Neuroscience

  • Shepherd, Gordon M. The synaptic organization of the brain. Oxford university press, 2004.

  • Fee, Michale S., and Jesse H. Goldberg. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198 (2011): 152-170.

  • Kornfeld, J., Januszewski, M., Schubert, P., Jain, V., Denk, W., & Fee, M. S. (2020). An anatomical substrate of credit assignment in reinforcement learning. BioRxiv.

  • Murdoch, D., Chen, R. and Goldberg, J.H., 2018. Place preference and vocal learning rely on distinct reinforcers in songbirds. Scientific reports, 8(1), pp.1-9.

  • Gielow, M.R. and Zaborszky, L., 2017. The input-output relationship of the cholinergic basal forebrain. Cell reports, 18(7), pp.1817-1830.

  • Chubykin, A.A., Roach, E.B., Bear, M.F. and Shuler, M.G.H., 2013. A cholinergic mechanism for reward timing within primary visual cortex. Neuron, 77(4), pp.723-735.

  • O'Reilly, R.C., Hazy, T.E., Mollick, J., Mackie, P. and Herd, S., 2014. Goal-driven cognition in the brain: a computational framework. arXiv preprint arXiv:1404.7591.

  • O'Reilly, R.C., Wyatte, D. and Rohrlich, J., 2014. Learning through time in the thalamocortical loops. arXiv preprint arXiv:1407.3432.

  • Guerguiev, J., Lillicrap, T.P. and Richards, B.A., 2017. Towards deep learning with segregated dendrites. ELife, 6, p.e22901.

  • Sacramento, J., Costa, R.P., Bengio, Y. and Senn, W., 2018. Dendritic cortical microcircuits approximate the backpropagation algorithm. In Advances in neural information processing systems (pp. 8721-8732).

  • Körding, K.P. and König, P., 2001. Supervised and unsupervised learning with two sites of synaptic integration. Journal of computational neuroscience, 11(3), pp.207-215.

  • Whittington, J.C. and Bogacz, R., 2019. Theories of error back-propagation in the brain. Trends in cognitive sciences, 23(3), pp.235-250.

  • Clancy, K.B., Koralek, A.C., Costa, R.M., Feldman, D.E. and Carmena, J.M., 2014. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nature neuroscience, 17(6), pp.807-809.

  • George, D., Lazaro-Gredilla, M., Lehrach, W., Dedieu, A. and Zhou, G., 2020. A detailed mathematical theory of thalamic and cortical microcircuits based on inference in a generative vision model. bioRxiv.

  • Heeger, D.J., 2017. Theory of cortical function. Proceedings of the National Academy of Sciences, 114(8), pp.1773-1782.

  • Rolls, E.T., 1996. A theory of hippocampal function in memory. Hippocampus, 6(6), pp.601-620.

  • Pfeiffer, B.E. and Foster, D.J., 2015. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 349(6244), pp.180-183.

  • Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D.S. and Yuste, R., 2016. Imprinting and recalling cortical ensembles. Science, 353(6300), pp.691-694.

  • Müller, M.G., Papadimitriou, C.H., Maass, W. and Legenstein, R., 2020. A model for structured information representation in neural networks of the brain. Eneuro, 7(3).

  • Abbott, L.F., Bock, D.D., Callaway, E.M., Denk, W., Dulac, C., Fairhall, A.L., Fiete, I., Harris, K.M., Helmstaedter, M., Jain, V. and Kasthuri, N., 2020. The Mind of a Mouse. Cell, 182(6), pp.1372-1376.

  • Turner, N.L., Macrina, T., Bae, J.A., Yang, R., Wilson, A.M., Schneider-Mizell, C., Lee, K., Lu, R., Wu, J., Bodor, A.L. and Bleckert, A.A., 2020. Multiscale and multimodal reconstruction of cortical structure and function. bioRxiv.

  • George D, Lehrach W, Kansky K, Lázaro-Gredilla M, Laan C, Marthi B, Lou X, Meng Z, Liu Y, Wang H, Lavin A. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science. 2017 Dec 8;358(6368).

Section 3 - Recent advancements at the interp

  • Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619-8624.

  • Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature neuroscience, 19(3), 356-365.

  • Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78-84.

  • Song, H. F., Yang, G. R., & Wang, X. J. (2017). Reward-based training of recurrent neural networks for cognitive and value-based tasks. Elife, 6, e21492.

  • Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X. J. (2019). Task representations in neural networks trained to perform many cognitive tasks. Nature neuroscience, 22(2), 297-306.

  • Dezfouli, A., Morris, R., Ramos, F. T., Dayan, P., & Balleine, B. (2018). Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. In Advances in Neural Information Processing Systems (pp. 4228-4237).

  • Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., ... & Botvinick, M. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 21(6), 860-868.

  • Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C. K., Hassabis, D., Munos, R., & Botvinick, M. (2020). A distributional code for value in dopamine-based reinforcement learning. Nature, 577(7792), 671-675.

  • Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., & Tweed, D. B. (2019). Deep learning without weight transport. In Advances in neural information processing systems (pp. 976-984).

  • Miconi, T. (2017). Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. Elife, 6, e20899.

  • Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-term memory and learning-to-learn in networks of spiking neurons. In Advances in Neural Information Processing Systems (pp. 787-797).

  • Merel, J., Aldarondo, D., Marshall, J., Tassa, Y., Wayne, G., & Ölveczky, B. (2019). Deep neuroethology of a virtual rodent. In International Conference on Learning Representations.

  • Greydanus, S., Koul, A., Dodge, J., & Fern, A. (2018, July). Visualizing and understanding atari agents. In International Conference on Machine Learning (pp. 1792-1801). PMLR.

  • Barrett, D. G., Morcos, A. S., & Macke, J. H. (2019). Analyzing biological and artificial neural networks: challenges with opportunities for synergy?. Current opinion in neurobiology, 55, 55-64.

  • Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On the importance of single directions for generalization. In International Conference on Learning Representations.

  • Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017). Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In Advances in Neural Information Processing Systems (pp. 6076-6085).

  • Puri, N., Verma, S., Gupta, P., Kayastha, D., Deshmukh, S., Krishnamurthy, B., & Singh, S. (2019, September). Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution. In International Conference on Learning Representations.

  • Sussillo, D., & Barak, O. (2013). Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural computation, 25(3), 626-649.

  • Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., & Sussillo, D. (2019). Universality and individuality in neural dynamics across large populations of recurrent networks. In Advances in neural information processing systems (pp. 15629-15641).

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/486062.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科普长文揭秘生命为何会具有主观能动性

来源:混沌巡洋舰动物的免疫系统依赖于被称为巨噬细胞的白细胞吞噬并吞噬入侵者。这些细胞有着坚定的决心和热情: 在显微镜下,你可以看到一个像球状的巨噬细胞在玻璃片上追逐一个细菌,它的猎物试图通过红细胞的障碍物逃跑时,而在它…

Linux——Centos7网络配置1ens33文件

解决的是 Name or service not known 的问题 [rootwww ~]# ping www.baidu.comping: www.baidu.com: Name or service not known [rootwww ~]# 1、网络配置查看 记住NAT设置中的子网IP、子网掩码、网关IP三项,接下来配置文件主要是这三项。网关一般就是.2,ip设置为…

科技垄断正在朝着纵向发展

来源:CSDN译者:弯月以下为译文:科技垄断有关的话题,相信大家都不陌生,而纵向垄断指的是通过技术栈深入到硬件的纵向集成。在本文中,我们来讨论一下为什么当下科技垄断开始朝着纵向发展,这种垄断…

android10全局黑暗,传Android 11或加入自动切换全局黑暗模式功能

日前有外媒援引消息人士爆料称,谷歌曾在Android 10系统中带来了全局黑暗模式功能,但自动切换黑暗模式的功能却在Android 10系统的早期测试阶段意外遭砍!而据最新消息显示,Android 11系统有望上线自动切换全局黑暗模式功能。按照An…

物理学走向尽头了?

制图:James OBrien作者:罗伯特戴克赫拉夫(Robbert Dijkgraaf)文章来源:环球科学物理学是否已经穷尽了人类探索的极限?亦或是才刚刚开始?普林斯顿高等研究所主任戴克赫拉夫给出了他的看法。物理学…

逆向工程-真码保存在系统文件破解QQ游戏对对碰助手

1)注册栏中输入任意值测试 1.2)记录弹出的关键字对话框 2.1)发送至PEID进行查壳 2.2)发现无壳 2.3)将软件载入OllyDBG程序 2.4)在反汇编栏下右键选择中文搜索引擎-》智能搜索 2.5)找到弹窗信息双击进入 3.0…

欢迎参加《城市大脑全球标准研究报告》发布会

《2020城市大脑全球标准研究报告》将与2020年12月23日在北京正式发布。这份报告是科学院研究团队基于城市大脑基础理论研究并与产业实践结合,形成的世界第一份城市大脑全球标准研究报告。欢迎新闻媒体、科研机构、科技企业、政府部门的记者,专家和领导参…

动态规划--Leetcode62--不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 问总共有多少条不同的路径? 例如&…

html5+实现图片自动切换,js图片自动切换效果处理代码

var curIndex0;//时间间隔 单位毫秒var timeInterval1000;var arrnew Array();arr[0]"1.jpg";arr[1]"2.jpg";arr[2]"3.jpg";arr[3]"4.jpg";arr[4]"5.jpg";arr[5]"6.jpg";arr[6]"7.jpg";setInterval(cha…

深度学习已经彻底改变了制造业的质量控制,但还不够深入

Photo-illustration: Neurala来源:IEEE电气电子工程师这是一篇客座文章。这里所表达的观点只是作者的观点,并不代表IEEE Spectrum或IEEE的立场。在2020年,我们看到了深度学习的加速利用,这是所谓的工业4.0革命的一部分&#xff0c…

Pycharm简单配置及详细快捷键介绍

Pycharm的配置 修改主题: File-》Setting: Appearance&Behavior->UI Options->Theme: 显示行号: Editor-General-Appearance 选择show line numbers显示行号: 修改字体大小: Editor-Colors&Font-Font&am…

“重”磅!人造物质量首超全球生物量

图片来源:HUSEYINTUNCER/ ISTOCK来源:科学技术哲学作者:辛雨12月10日,《自然》发表的最新研究显示,建筑、道路、汽车等人造物体的质量现已超过地球上的生物总量,而每周的新增物量相当于地球上近80亿人口的总…

html固定表的属性是什么,css如何固定表头

css如何固定表头实现头部导航栏固定用到的属性是:position:sticky 。粘性定位元素(stickily positioned element)是计算后位置属性为 sticky 的元素。盒位置根据正常流计算(这称为正常流动中的位置),然后相对于该元素在流中的 flow root(BFC)和 containi…

HTML--注册页面案例

<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title></title> </head> <body> <!--表里标签&#xff1a;action:提交的地址 method&#xff1a; get…

科技界内卷化如何破

本文转载自李侠科学网博客撰文 | 李侠&#xff08;上海交通大学科学史与科学文化研究院教授&#xff09;众所周知&#xff0c;2020年内卷化成为一个年度热词&#xff0c;它本是美国文化人类学家吉尔茨&#xff08;Clifford Geertz&#xff0c;1926-2006&#xff09;提出的一个概…

动态规划--Leetcode63.不同路径二

一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为“Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为“Finish”&#xff09;。 现在考虑网格中有障碍物。那么从左上角到右下角将…

IEEE:2021年的机遇、挑战以及关键的科技趋势

来源&#xff1a;笑看国际风云【导读】近日&#xff0c;一直致力于通过推动科技进步以造福全人类、全球最大的专业技术组织IEEE&#xff08;电气电子工程师学会&#xff09;&#xff0c;发布了《IEEE全球CIO、CTO访问调研&#xff1a;2021年的机遇和挑战&#xff0c;以及关键的…

边缘AI是内存技术发展的催化剂

来源&#xff1a;北京物联网智能技术应用协会人工智能的崛起&#xff0c;对内存系统提出了一些新要求。今天的内存技术能够满足AI时代下的新应用吗&#xff1f;从长远来看&#xff0c;新兴内存技术对边缘 AI有什么前景?首先要意识到的是“边缘AI”应用没有特定标准;“边缘”在…

金叉成功率_一个非常强烈的买卖信号:三金叉见顶,三死叉见底,短短10字,但是成功率却远超“金叉买,死叉卖”...

(本文由公众号越声投顾(yslcw927))整理&#xff0c;仅供参考&#xff0c;不构成操作建议。如自行操作&#xff0c;注意仓位控制和风险自负。)为什么做交易的人95%是要被市场打败出局?一、炒股最困难的不是选股&#xff0c;也不是买卖&#xff0c;而是等待;人生最困难的不是努力…

《中国基础研究竞争力报告2020》发布,6图表速览报告核心结论

来源&#xff1a; 科学出版社持续跟踪先进国家基础研究发展态势&#xff0c;准确研判我国基础研究竞争力&#xff0c;科学筹划基础研究发展&#xff0c;对于打造科技核心竞争力、构筑先发优势、蓄积长远发展原动力&#xff0c;具有重要战略意义。为了支撑科技创新&#xff0c;中…