1.什么是二叉搜索树?
2.二叉搜索树的操作
3.二叉搜索树的C语言实现
#include <stdio.h>
#include <stdlib.h> #define ElementType int
typedef struct TreeNode * BinTree;
typedef BinTree Position;
struct TreeNode{ ElementType Data; BinTree Left; BinTree Right;
} ;
BinTree MakeEmpty ( )
{ BinTree BT; BT= ( BinTree) malloc ( sizeof ( struct TreeNode) ) ; BT-> Left= NULL ; BT-> Right= NULL ; return BT;
}
Position Find ( ElementType X, BinTree BST)
{ while ( BST) { if ( X> BST-> Data) { BST= BST-> Right; } else if ( X< BST-> Data) { BST= BST-> Left; } else { return BST; } } return NULL ;
}
Position FindMin ( BinTree BST)
{ while ( BST-> Left) { BST= BST-> Left; } return BST;
}
Position FindMax ( BinTree BST)
{ while ( BST-> Right) { BST= BST-> Right; } return BST;
}
BinTree Insert ( ElementType X, BinTree BST)
{ if ( ! BST) { BST= ( BinTree) malloc ( sizeof ( struct TreeNode) ) ; BST-> Data= X; BST-> Left= BST-> Right= NULL ; } else { if ( X< BST-> Data) { BST-> Left= Insert ( X, BST-> Left) ; } else if ( X> BST-> Data) { BST-> Right= Insert ( X, BST-> Right) ; } } return BST;
}
BinTree Delete ( ElementType X, BinTree BST)
{ Position Tmp; if ( ! BST) { printf ( "要删除的元素未找到\n" ) ; } else if ( X< BST-> Data) { BST-> Left= Delete ( X, BST-> Left) ; } else if ( X> BST-> Data) { BST-> Right= Delete ( X, BST-> Right) ; } else { if ( BST-> Left&& BST-> Right) { Tmp= FindMin ( BST-> Right) ; BST-> Data= Tmp-> Data; BST-> Right= Delete ( BST-> Data, BST-> Right) ; } else { Tmp= BST; if ( ! BST-> Left) { BST= BST-> Right; } else if ( ! BST-> Right) { BST= BST-> Left; } free ( Tmp) ; } } return BST;
}
int main ( )
{ int i; BinTree BST[ 6 ] ; for ( i= 0 ; i< 6 ; i++ ) { BST[ i] = MakeEmpty ( ) ; } BST[ 0 ] -> Data= 18 ; BST[ 0 ] -> Left= BST[ 1 ] ; BST[ 0 ] -> Right= BST[ 2 ] ; BST[ 1 ] -> Data= 10 ; BST[ 1 ] -> Left= BST[ 3 ] ; BST[ 1 ] -> Right= BST[ 4 ] ; BST[ 2 ] -> Data= 20 ; BST[ 2 ] -> Right= BST[ 5 ] ; BST[ 3 ] -> Data= 7 ; BST[ 4 ] -> Data= 15 ; BST[ 5 ] -> Data= 22 ; printf ( "%d %d\n" , BST[ 0 ] -> Data, BST[ 0 ] -> Left-> Data) ; Position BST1; BST1= Find ( 22 , BST[ 0 ] ) ; printf ( "%d\n" , BST1-> Data) ; Position BST2; BST2= FindMin ( BST[ 0 ] ) ; printf ( "MIN=%d\n" , BST2-> Data) ; Position BST3; BST3= FindMax ( BST[ 0 ] ) ; printf ( "MAX=%d\n" , BST3-> Data) ; BST[ 0 ] = Insert ( 19 , BST[ 0 ] ) ; printf ( "%d\n" , BST[ 0 ] -> Right-> Left-> Data) ; return 0 ;
}