量子力学与机器学习相结合,预测高温下的化学反应

9de3760621418182c8cb49f8e35db14e.png

来源:ScienceAI

编辑:凯霞

在高温下从氧化物中提取金属不仅对于钢铁等金属的生产至关重要,而且对回收利用也必不可少。但当前的提取过程是碳密集型的,会排放大量温室气体。

研究人员一直在探索开发「更绿色」的工艺方法。第一性原理理论的自下而上的计算过程设计,将是一个有吸引力的替代方案,但迄今为止尚未实现。

来自哥伦比亚大学的研究团队开发了一种新的计算技术,将量子力学和机器学习相结合,可准确预测金属氧化物对其「贱金属」的还原温度。该方法在计算上与常规计算一样有效,并且在测试中,比使用量子化学方法对温度效应的计算要求高的模拟更准确。

该研究以「Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures」为题,于 12 月 1 日发表在《Nature Communications》杂志上。

32f73fe8b80da9375557f3405a10c474.png

「如果我们要过渡到更可持续的未来,化学工业的脱碳至关重要,但为现有的工业流程开发替代方案非常耗费成本且耗时,」论文通讯作者 Urban 说。「不需要初始实验输入的自下而上的计算过程设计,将是一个有吸引力的替代方案,但迄今为止尚未实现。据我们所知,这项新研究是首次尝试将计算与人工智能的混合方法用于此应用程序。这是首次证明基于量子力学的计算可用于设计高温过程。」

在这里,研究人员展示了如何用描述温度依赖性的机器学习模型来补充基于第一性原理的量子力学理论,从而能够预测高温下的化学反应。

13368205acfebbe2ed56c02875f134ff.png

图示:预测金属氧化物高温特性的混合模型。(来源:论文)

该方法的关键新颖之处在于它利用了已知的热力学关系。基于高斯过程回归(GPR)的 ML 模型的预测和第一性原理计算的结果都进入了控制金属氧化物还原的热力学方程,从而能够定量预测未包含在参考中的氧化物的高温材料特性数据集。通过这种热力学基础,可以在无需额外成本的情况下访问其他与温度相关的物理属性,并且与直接针对特定可观测值训练 ML 模型时相比,其准确性更高。

特别是,研究人员证明了零开尔文第一性原理计算可以通过机器学习的温度效应进行增强,以产生基于物理的 ML 模型,用于以极低的计算成本来高精度地预测高温反应自由能。

「自由能是热力学的一个关键量,原则上可以从中推导出其他与温度相关的量,」该论文的第一作者 José A. Garrido Torres 说。「因此,我们预计我们的方法也将有助于预测,例如由可再生电能驱动的清洁电解金属提取工艺设计的熔化温度和溶解度。」

作为一个具体的例子,要将金属氧化物高温冶金还原为其「贱金属」。具体来说,目标是预测使用 C 作为还原剂的金属氧化物(MxOy) 的还原温度,这对应于化学反应:

422d19c367fdd3cd6131182b28907daf.png

式(1)对应的反应吉布斯自由能可表示为:

e9cf029e7a0fd778716f670d1e3e63ae.png

目标是对还原温度 Tred 进行计算预测,高于该温度,ΔrGred(MxOy) 的符号变为负值,并且发生金属氧化物的还原。

接下来,将比较三种不同的计算方法:(1)仅基于第一性原理密度泛函理论(DFT)的 Tred 的完全非经验近似;(2) 从实验还原温度的直接拟合中获得的 ML 模型;(3)一种混合方案,使用温度相关贡献的 ML 模型增强 DFT 零开尔文预测。

正如预期的那样,当模型中包含更高层次的理论时,还原温度的准确性会提高:当对自由能分别从 235 K 到 166 K 和从 265 K 到 202 K 的声子校正(phonon corrections )时,基于 DFT 的模型的平均绝对误差(MAE)和均方根误差(RMSE)会降低。

然而,包括声子校正在计算上要求很高,并且随着原子数量的增加扩展性很差,这使得具有大晶胞的晶体结构的计算成本很高。

3356f1d091d3521b167965516550703e.png

图示:预测和参考金属氧化物还原温度的比较。(来源:论文)

研究人员在 表 1 的实验还原温度上训练了基于 GPR 的 ML 模型,并使用留一法交叉验证 (LOOCV) 量化其准确性。此外,还使用不同的分区进行了多轮交叉验证,以研究预测能力相对于训练/测试折叠大小的稳健性。

表 1:不同金属氧化物的实验参考数据。(来源:论文)

9d7c125f04639e3a993e8183065d6c8f.png

研究观察到 GPR 模型的预测还原温度在准确性上超过了仅使用 DFT 时获得的第一性原理值,即使包括计算成本高的声子校正也是如此。LOOCV 的 MAE 和 RMSE 分别为 105 K 和 127 K,比纯 DFT 预测的误差小 50% 左右。除了大大提高了预测能力之外,与 DFT 相比,GPR 模型的另一个好处是它提供的不确定性估计。

「未来离我们越来越近了,」澳大利亚国立大学工程与计算机科学学院副院长、专注于耐腐蚀的材料设计专家 Nick Birbilis 说。「在过去一个世纪里,人类的大部分精力和消耗的资本都花在了开发我们日常使用的材料上——我们依靠这些材料来提供动力、飞行和娱乐。材料开发缓慢且成本高昂,这使得机器学习成为未来材料设计的关键发展。为了让机器学习和人工智能发挥其潜力,模型必须具有机械相关性和可解释性。这正是 Urban 和 Garrido Torres 的工作所展示的。此外,这项工作首次采用了全系统方法,通过高级算法将一个终端工程应用程序的原子模拟连接起来。」

该团队目前正致力于将该方法扩展到其他与温度相关的材料特性,例如溶解度、电导率和熔化,这些特性是设计无碳且由清洁电能驱动的电解金属提取工艺所需的。

论文链接:https://www.nature.com/articles/s41467-021-27154-2

参考内容:https://phys.org/news/2021-12-approach-chemical-reactions-high-temperatures.html

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

4c0d3be9cbe27a31b2d61b71a911837e.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/483072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DeepMind提出强化学习新方法,可实现人机合作

来源:AI前线作者:Ben Dickson译者:盖策划:凌敏本文来自 BDTechTalks 网站的“AI 研究论文评论”专栏。该专栏提供人工智能最新发现的系列解读文章。尽管人工智能研究人员正力图建立能在围棋、星际争霸到 Dota 等复杂游戏中击败人类…

军事大脑的构建对未来战争的影响

前言:本文是我与军事科学院的赵蔚婷,王婉两位老师在2020年4月发表的一篇论文,首发在《中国科技论文在线》,是将互联网大脑模型与军事领域结合,形成军事大脑和军事超级智能的概念体系,重点提出军事神经元和军事云反射弧…

斯坦福抢开“元宇宙”第一课,上起来还真不便宜

过去半个世纪,斯坦福教给学生的技术,促成了硅谷的诞生;而为了将来的 Web3 时代,斯坦福也已经做好了准备。来源: 硅星人文:杜晨 编辑:VickyXiao今年10月底,硅谷顶级科技公司 Facebo…

加拿大工程院院士于非:互联—— 从质量、能源、信息到智能

来源:AI科技评论整理:莓酊编辑:青暮2021年12月9日,第六届全球人工智能与机器人大会(GAIR 2021)在深圳正式启幕。140余位产学领袖、30位Fellow聚首,从AI技术、产品、行业、人文、组织等维度切入&…

2021年诺贝尔经济学奖评述:解决重大社会问题的自然实验因果框架

来源:集智俱乐部作者:诺奖委员会译者:邓宇昊 编辑:邓一雪 导语许多重大社会问题都涉及到因果分析。比如,接受更长时间的教育是否会让你未来的收入增加?提高最低工资对一个地方的就业会产生怎样的影响&…

溯因推理:人工智能的盲点

来源:AI前线作者:Ben Dickson译者:Sambodhi策划:凌敏本文给当今人工智能界推崇深度学习的现象泼了冷水,指出了人工智能的盲点:溯因推理,并提醒人们不要忽视深度学习的种种问题,否则将…

终于,LoRaWAN成全球物联网标准!LoRa将拿下LPWAN领域50%市场?

来源:LoRa联盟官网等整理发布:物联网智库 不久之前,支持物联网低功耗广域网(LPWAN)LoRaWAN开放标准的LoRa联盟宣布,致力于“物联网和智慧城市及社区标准化”的国际电联电信标准化部门(ITU-T&…

算法(二叉树-矩阵-堆排序)

最小和 位运算知识点 12>>1 //6 a/2 等价为 a>>1 中间数 (LR)/2 会出现溢出(溢出的意思就是超过了二进制) L(R-L)/2 最终改成 l((r-l)>>1) const smallSum arr > {if (arr null || arr.length < 2) {return 0;}return mergeSort(arr, 0, arr.length …

Nature:盐粒大小的相机,可以拍出清晰彩色照片,未来或可应用到手机

来源&#xff1a;大数据文摘你能想象上图只有盐粒大小的物体是一款相机吗&#xff1f;事实上&#xff0c;这款微型相机甚至可以拍出清晰的全彩图像&#xff0c;而相比之下&#xff0c;普通相机的尺寸要大50万倍。我们可以来看看它的成片。这款微型相机是普林斯顿大学和华盛顿大…

spring学习笔记01-BeanFactory和ApplicationContext的区别

spring学习笔记01-BeanFactory和ApplicationContext的区别 BeanFactory 和 ApplicationContext 的区别 BeanFactory 才是 Spring 容器中的顶层接口。 ApplicationContext 是它的子接口。           BeanFactory 和 ApplicationContext 的区别&#xff1a; 创建对象的…

java微博爬虫

微博爬取要做到每日百万级的数据量&#xff0c;需要解决很多问题。 1.springboot自带Scheduled注解是一个轻量级的quartz&#xff0c;可以完成定时任务。只需要在运行方法上加一个Scheduled注解即可。 该注解有许多属性值 initiaDelay 从程序开始延长一定时间后首次执行。 fixe…

2100年彻底颠覆世界的“十大未来科技”

来源&#xff1a;于硅谷智库 科学家们对2100年前的人类生活进行了十大预测&#xff0c;如果这些预测能够变成现实的话&#xff0c;将会让世界发生翻天覆地的变化。1能上网的隐形眼镜出现时间&#xff1a;2030年前预测者&#xff1a;来自华盛顿大学西雅图分校的巴巴克A帕尔维兹教…

智能如何产生,这仍然是个问题

来源&#xff1a;孙学军科学网博客链接地址&#xff1a;https://blog.sciencenet.cn/blog-41174-1316772.html本文的智能只是生物系统工作原理层面&#xff0c;而不是意识层面的&#xff0c;无论是工作原理&#xff0c;还是大脑意识层面&#xff0c;今天的科学仍然没有给出理想…

spring学习笔记05-IOC常用注解(二)

文章目录2.3 关于 Spring 注解和 XML 的选择问题2.4spring 管理对象细节2.5spring 的纯注解配置2.5.1 待改造的问题2.5.2 新注解说明2.5.2.1 Configuration2.5.2.2 ComponentScan2.5.2.3 Bean2.5.2.4 PropertySource2.5.2.5 Import2.5.2.6 通过注解获取容器&#xff1a;2.3 关于…

一文掌握明年物联网传感器市场!2022中国AIoT产业全景图谱报告新鲜出炉

来源&#xff1a;传感器专家网物联网产业是传感器应用最广泛的领域之一&#xff0c;研发新型传感器&#xff0c;做传感器市场&#xff0c;都不能不考虑物联网产业的需求。2021年随着COVID-19 病毒的存在已常态化&#xff0c;防疫抗疫进入了拉锯阶段&#xff1b;波及全球的“芯片…

EUV光刻机内部揭秘!

转载自: ittbank来源&#xff1a;半导体行业观察PatrickWhelan正在透过他的洁净室服面板凝视着事情的进展。在他面前是一块闪闪发光的玻璃&#xff0c;大约有一个烤箱那么大&#xff0c;上面刻有许多挖出的部分以减轻重量&#xff0c;看起来像一个外星图腾。Whelan 的团队正在将…

数据结构与算法——搜索

文章目录1.内容概述2.岛屿数量2.1 题目描述2.2 DFS深度搜索算法思路2.3 BFS宽度搜索算法思路2.4 C代码实现3.单词接龙3.1 题目描述3.2 算法思路3.3 C代码实现4.单词接龙 II4.1 题目描述4.2 算法思路5.火柴拼正方形5.1 题目描述5.2 算法思路5.3 代码实现5.4 算法思路25.5 代码实…

小程序基础能力~网络

&#xff08;1&#xff09;网络-使用说明 网络 在小程序/小游戏中使用网络相关的 API 时&#xff0c;需要注意下列问题&#xff0c;请开发者提前了解。 1. 服务器域名配置 每个微信小程序需要事先设置通讯域名&#xff0c;小程序只可以跟指定的域名与进行网络通信。包括普通 HT…

mybatis学习笔记-02-第一个mybatis程序

该视频为狂神说java视频配套笔记&#xff08;博主自己手打223&#xff0c;日后做个参考223&#xff09;&#xff0c;b站连接&#xff1a;Mybatis最新完整教程IDEA版【通俗易懂】-02-第一个mybatis程序) 文章目录2.第一个mybatis程序2.1搭建环境2.2 创建一个模块2.3编写代码2.4测…

徐波所长专访 | 人工智能:从“作坊式”走向“工业化”新时代

来源&#xff1a;人民网人工智能创新不断 “一体两翼”快速发展人民网&#xff1a;当前&#xff0c;人工智能技术创新不断&#xff0c;应用层出不穷。它究竟走到了哪一步&#xff1f;能否谈谈您是如何看待我国人工智能技术发展现状的&#xff1f;徐波&#xff1a;人工智能是一个…