day28 socket网络编程

 

一  socket 套接字

二  粘包问题

 

一  socket 套接字

1.1 为何学习socket一定要先学习互联网协议:

1.首先:网络编程目标就是教会你如何基于socket编程,来开发一款自己的C/S架构软件

2.其次:C/S架构的软件(软件属于应用层)是基于网络进行通信的

3.然后:网络的核心即一堆协议,协议即标准,你想开发一款基于网络通信的软件,就必须遵循这些标准。

4.最后:从这些标准开始研究,开启socket编程

                                                                              

1.2 socket层

在上图中,我们没有看到Socket,我们用下图来继续说明. 


 

1.3 socket是什么

Socket是应用层与TCP/IP协议通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

1.4  套接字发展史及分类

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 因此,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。 

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)

1.5 套接字工作流程

       一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。 生活中的场景就解释了这工作原理。

      

                                           图3       

先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束

socket()模块函数用法

 1 import socket2 socket.socket(socket_family,socket_type,protocal=0)3 socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。4 5 获取tcp/ip套接字6 tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)7 8 获取udp/ip套接字9 udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
10 
11 由于 socket 模块中有太多的属性。我们在这里破例使用了'from module import *'语句。使用 'from socket import *',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。
12 例如tcpSock = socket(AF_INET, SOCK_STREAM)

 

服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来

客户端套接字函数
s.connect() 主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常

公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字

面向锁的套接字方法
s.setblocking() 设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间

面向文件的套接字的函数
s.fileno() 套接字的文件描述符
s.makefile() 创建一个与该套接字相关的文件

 读者勿看:socket实验推演流程

1.6 基于TCP的套接字

tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端

tcp服务端

1 ss = socket() #创建服务器套接字
2 ss.bind()      #把地址绑定到套接字
3 ss.listen()      #监听链接
4 inf_loop:      #服务器无限循环
5     cs = ss.accept() #接受客户端链接
6     comm_loop:         #通讯循环
7         cs.recv()/cs.send() #对话(接收与发送)
8     cs.close()    #关闭客户端套接字
9 ss.close()        #关闭服务器套接字(可选)

 

tcp客户端

1 cs = socket()    # 创建客户套接字
2 cs.connect()    # 尝试连接服务器
3 comm_loop:        # 通讯循环
4     cs.send()/cs.recv()    # 对话(发送/接收)
5 cs.close()            # 关闭客户套接字

 

 

socket通信流程与打电话流程类似,我们就以打电话为例来实现一个low版的套接字通信

 服务端
 客户端

加上链接循环与通信循环

复制代码
#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',8081)#电话卡
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5)     #手机待机while True:                         #新增接收链接循环,可以不停的接电话conn,addr=s.accept()            #手机接电话# print(conn)# print(addr)print('接到来自%s的电话' %addr[0])while True:                         #新增通信循环,可以不断的通信,收发消息msg=conn.recv(BUFSIZE)             #听消息,听话# if len(msg) == 0:break        #如果不加,那么正在链接的客户端突然断开,recv便不再阻塞,死循环发生print(msg,type(msg))conn.send(msg.upper())          #发消息,说话conn.close()                    #挂电话s.close()                       #手机关机
复制代码
 客户端改进版

 

问题:在重启服务端时可能会遇到

这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究1.tcp三次握手,四次挥手 2.syn洪水攻击 3.服务器高并发情况下会有大量的time_wait状态的优化方法)

解决方法:

 方法一
 方法二
1.7 基于UDP的套接字

udp是无链接的,先启动哪一端都不会报错

udp服务端

1 ss = socket()   #创建一个服务器的套接字
2 ss.bind()       #绑定服务器套接字
3 inf_loop:       #服务器无限循环
4     cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送)
5 ss.close()                         # 关闭服务器套接字

 

udp客户端

cs = socket()   # 创建客户套接字
comm_loop:      # 通讯循环cs.sendto()/cs.recvfrom()   # 对话(发送/接收)
cs.close()                      # 关闭客户套接字

 

udp套接字简单示例

 udp服务端
 udp客户端

qq聊天(由于udp无连接,所以可以同时多个客户端去跟服务端通信)

 udp服务端
 udp客户端1
 udp客户端2

服务端运行结果

客户端1运行结果

客户端2运行结果

时间服务器

 ntp服务端
 ntp客户端

九 粘包现象

让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)

注意注意注意:

res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

且只能从管道里读一次结果

注意:命令ls -l ; lllllll ; pwd 的结果是既有正确stdout结果,又有错误stderr结果

 服务端
 客户端

上述程序是基于tcp的socket,在运行时会发生粘包

 

让我们再基于udp制作一个远程执行命令的程序

 服务端
 客户端

上述程序是基于udp的socket,在运行时永远不会发生粘包

十 什么是粘包

须知:只有TCP有粘包现象,UDP永远不会粘包,为何,且听我娓娓道来

首先需要掌握一个socket收发消息的原理

 

发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

  1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
  2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
  3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

两种情况下会发生粘包。

发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)

 服务端
 客户端

接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包) 

 服务端
 客户端

 

拆包的发生情况

当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

补充问题一:为何tcp是可靠传输,udp是不可靠传输

基于tcp的数据传输请参考我的另一篇文章http://www.cnblogs.com/linhaifeng/articles/5937962.html,tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

而udp发送数据,对端是不会返回确认信息的,因此不可靠

补充问题二:send(字节流)和recv(1024)及sendall

recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

十一 解决粘包的low比处理方法

问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据

low版本的解决方法

 服务端
 客户端

为何low:

程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗

十二 峰哥解决粘包的方法

为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据

struct模块 

该模块可以把一个类型,如数字,转成固定长度的bytes

>>> struct.pack('i',1111111111111)

。。。。。。。。。

struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围

 

复制代码
import json,struct
#假设通过客户端上传1T:1073741824000的文件a.txt#为避免粘包,必须自定制报头
header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值#为了该报头能传送,需要序列化并且转为bytes
head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输#为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度#客户端开始发送
conn.send(head_len_bytes) #先发报头的长度,4个bytes
conn.send(head_bytes) #再发报头的字节格式
conn.sendall(文件内容) #然后发真实内容的字节格式#服务端开始接收
head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
header=json.loads(json.dumps(header)) #提取报头#最后根据报头的内容提取真实的数据,比如
real_data_len=s.recv(header['file_size'])
s.recv(real_data_len)
复制代码
 关于struct的详细用法

 

 服务端(自定制报头)
 客户端(自定制报头)

我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)

发送时:

先发报头长度

再编码报头内容然后发送

最后发真实内容

 

接收时:

先手报头长度,用struct取出来

根据取出的长度收取报头内容,然后解码,反序列化

从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

 服务端:定制稍微复杂一点的报头
 客户端

 

 

FTP作业:上传下载文件

 服务端
复制代码
import socket
import struct
import json
import osclass MYTCPClient:address_family = socket.AF_INETsocket_type = socket.SOCK_STREAMallow_reuse_address = Falsemax_packet_size = 8192coding='utf-8'request_queue_size = 5def __init__(self, server_address, connect=True):self.server_address=server_addressself.socket = socket.socket(self.address_family,self.socket_type)if connect:try:self.client_connect()except:self.client_close()raisedef client_connect(self):self.socket.connect(self.server_address)def client_close(self):self.socket.close()def run(self):while True:inp=input(">>: ").strip()if not inp:continuel=inp.split()cmd=l[0]if hasattr(self,cmd):func=getattr(self,cmd)func(l)def put(self,args):cmd=args[0]filename=args[1]if not os.path.isfile(filename):print('file:%s is not exists' %filename)returnelse:filesize=os.path.getsize(filename)head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}print(head_dic)head_json=json.dumps(head_dic)head_json_bytes=bytes(head_json,encoding=self.coding)head_struct=struct.pack('i',len(head_json_bytes))self.socket.send(head_struct)self.socket.send(head_json_bytes)send_size=0with open(filename,'rb') as f:for line in f:self.socket.send(line)send_size+=len(line)print(send_size)else:print('upload successful')client=MYTCPClient(('127.0.0.1',8080))client.run()
复制代码





Socket(套接字)

127.0.0.1本机回还地址
只能自己识别自己 其他人无法访问

send与recv对应
不要出现两边都是相同的情况

recv是跟内存要数据
至于数据的来源 你无需考虑

TCP特点
会将数据量比较小的并且时间间隔比较短的数据
一次性打包发送给对方

socket最简单版本


解决粘包问题的最复杂版本

from socket import SOL_SOCKET,SO_REUSEADDR
sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加

解决粘包问题
服务端
1.先制作一个发送给客户端的字典
2.制作字典的报头
3.发送字典的报头
4.发送字典
5.再发真实数据

客户端
1.先接受字典的报头
2.解析拿到字典的数据长度
3.接受字典
4.从字典中获取真实数据的长度
5.接受真实数据

写一个上传电影的功能
1.循环打印某一个文件夹下面的所有的文件
2.用户选取想要上传的文件
3.将用户选择的文件上传到服务端
4.服务端保存该文件




1.直接获取数据1024
2.制作一个数据的报头
3.先发个字典 然后再发真实数据

 
































转载于:https://www.cnblogs.com/Ryan-Yuan/p/11317724.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2022年值得关注的8个人工智能趋势

来源&#xff1a;AI前线作者&#xff1a;Michael Spencer译者&#xff1a;Sambodhi策划&#xff1a;凌敏1. AI-on-5G2022 年&#xff0c;工业 AI 和 AI-on-5G 物联网应用将会成为主流。想象一下&#xff0c;当我们以元宇宙为目标的时候&#xff0c;我们对物理空间的升级方式同样…

我国科学家首次揭示“时空”记忆在猕猴大脑中表征的几何结构

来源&#xff1a;央视新闻客户端作者&#xff1a;帅俊全 2月11日&#xff0c;国际学术期刊《科学》以长文形式发表了题为《序列工作记忆在猕猴前额叶表征的几何结构》的研究论文。近日&#xff0c;中国科学院脑科学与智能技术卓越创新中心与国内多家单位合作&#xff0c;发现神…

智源学术顾问David Harel:经典建模与AI的联姻,如何攻破机器学习的可解释性?| 大师讲座...

来源&#xff1a;智源社区讲者&#xff1a;David Harel整理&#xff1a;熊宇轩编辑&#xff1a;李梦佳导读&#xff1a;设想一下&#xff0c;现在我们要建造一种工厂机器人&#xff0c;能移动物体、组装零件、抬起物体。机器学习专家自然会采用深度学习、神经网络一类的AI技术&…

重磅突发!全球首富40颗卫星遭摧毁

来源&#xff1a;中国基金报在上周最新发射的49颗卫星中&#xff0c;有40颗卫星遭地磁风暴“摧毁”——全球首富、特斯拉CEO马斯克旗下SpaceX公司的星链计划遭遇挫折。此外&#xff0c;美国国家航空航天局(NASA)、亚马逊均表示&#xff0c;对于SpaceX星链计划还要新部署约3万颗…

扩散模型就是自动编码器!DeepMind研究学者提出新观点并论证

来源&#xff1a;明敏 发自 凹非寺量子位 | 公众号 QbitAI由于在图像生成效果上可以与GAN媲美&#xff0c;扩散模型最近成为了AI界关注的焦点。谷歌、OpenAI过去一年都提出了自家的扩散模型&#xff0c;效果也都非常惊艳。另一边&#xff0c;剑桥大学的学者David Krueger提出&a…

2019已悄然过半

2019过半&#xff0c;不知不觉已进入秋天&#xff0c;今年上海夏天格外凉爽&#xff0c;没感觉热就结束了。上半年总体感觉归于平淡&#xff0c;但是平平淡淡才是真嘛。年初制定的个人计划基本完成&#xff0c;关键是难度系数都不高&#xff0c;下半年有两项重要考核正在等着&a…

关于欧盟的芯片法案,ASML是这样看的!

来源&#xff1a;光电汇OESHOW近日&#xff0c;欧盟发布了一个芯片法案&#xff0c;ASML随后便公开表示了他们对这个答案的看法。内容如下&#xff1a;塑造我们生活的智能互联世界的全球大趋势正在推动对微芯片的需求显著增长。最近的芯片短缺凸显了复杂的全球半导体生态系统中…

万字长文!DeepMind科学家总结2021年的15个高能研究

来源&#xff1a;新智元2021年ML和NLP依然发展迅速&#xff0c;DeepMind科学家最近总结了过去一年的十五项亮点研究方向&#xff0c;快来看看哪个方向适合做你的新坑&#xff01;最近&#xff0c;DeepMind科学家Sebastian Ruder总结了15个过去一年里高能、有启发性的研究领域&a…

情人节特刊| 爱的神经机制

来源&#xff1a;浙江大学学术委员会文&#xff1a;周炜1在哺乳动物的物种中&#xff0c;仅有不到10%的物种能够形成基于一夫一妻制的配对关系。随着时间的推移&#xff0c;通过选择性地寻找伴侣和与伴侣互动&#xff0c;夫妻关系得以维持和加强。大多数实验室啮齿动物包括大小…

为了自动驾驶,谷歌用NeRF在虚拟世界中重建了旧金山市

来源&#xff1a;机器学习研究组订阅真不用来做成元宇宙&#xff1f;训练自动驾驶系统需要高精地图&#xff0c;海量的数据和虚拟环境&#xff0c;每家致力于此方向的科技公司都有自己的方法&#xff0c;Waymo 有自己的自动驾驶出租车队&#xff0c;英伟达创建了用于大规模训练…

人工智能可以自己编码?2022年这8个人工智能趋势值得关注!

来源&#xff1a;产业大视野译者&#xff1a;Sambodhi1. AI-on-5G2022 年&#xff0c;工业 AI 和 AI-on-5G 物联网应用将会成为主流。想象一下&#xff0c;当我我以元宇宙为目标的时候&#xff0c;我们对物理空间的升级方式同样令人印象深刻。AI-on-5G 组合计算基础设施为传感器…

通过OracleDataReader来读取BLOB类型的数据

在实际的应用过程中&#xff0c;需要把大块的二进制数据存储在数据库中。读取这些大块的数据&#xff0c;可以通过强制类型转换成为byte数组&#xff0c;但是当这个二进制数据体够大时&#xff08;几十兆或者上百兆&#xff09;&#xff0c;一次并不能获取到他的完整长度&#…

完美的优化目标,人工智能的盲点

来源&#xff1a;AI科技评论译者&#xff1a;辛西娅编辑&#xff1a;维克多人工智能&#xff08;AI&#xff09;系统的脆弱性一直被行业人员所诟病&#xff0c;稍微的数据错误就会使系统发生故障。例如在图像识别中&#xff0c;图片微小的像素改变&#xff0c;不会干扰人类视觉…

宇宙和世界真的是虚拟的吗?

来源&#xff1a;数学中国 2021年元宇宙无疑成为科技领域最火爆的概念之一&#xff0c;扎克伯格曾表示未来脸书将从一家社交媒体公司转变为一家元宇宙公司&#xff0c;之后元宇宙这个词席卷了整个互联网与投资圈。在大多数人还搞不懂元宇宙是什么的时候&#xff0c;科技公司们已…

粒子物理学有了新的基础数学理论

来源&#xff1a;科技日报科技日报柏林2月13日电 &#xff08;记者李山&#xff09;近日&#xff0c;来自奥地利和英国的科学家共同发表了一个粒子物理学的基础数学新理论。他们定义和研究了黎曼曲面上存在的非常稳定的希格斯丛&#xff0c;其蕴涵了全局幂零锥稳定分量的多重性…

2022年重大颠覆性科技创新趋势报告(完整版)

来源&#xff1a;点滴科技资讯未来智能实验室的主要工作包括&#xff1a;建立AI智能系统智商评测体系&#xff0c;开展世界人工智能智商评测&#xff1b;开展互联网&#xff08;城市&#xff09;大脑研究计划&#xff0c;构建互联网&#xff08;城市&#xff09;大脑技术和企业…

02.Mybatis的动态代理方式实现增删改查

动态代理的方式实现增删改查: 通过约定的方式定位sql语句 约定 > 配置文件 > 硬编码 约定的目标是省略掉通过硬编码的方式定位sql的代码&#xff0c;通过接口直接定位出sql语句,以下代码为通过硬编码的方法定位sql: 1      //读取conf.xml 配置文件2 Reader…

孙正义看未来30年:这个趋势,永远不会错(附完整PPT)

来源&#xff1a;大数据实验室 对于今后30年来讲&#xff0c;我认为现在是个很关键的时刻&#xff0c;尤其是在各位的人生当中。而且现在是一整个概念的转变&#xff0c;我们要包容这个概念的转变。我想先给大家看两张照片。这是美国纽约的第五大道&#xff0c;左边那张是1900年…

可视化解释11种基本神经网络架构

来源&#xff1a;海豚数据科学实验室标准&#xff0c;循环&#xff0c;卷积和自动编码器网络随着深度学习的飞速发展&#xff0c;已经创建了完整的神经网络体系结构主机&#xff0c;以解决各种各样的任务和问题。尽管有无数的神经网络架构&#xff0c;但对于任何深度学习工程师…

设计模式之二抽象工厂设计模式

继上篇简单工厂设计模式之后&#xff0c;今天继续讲解抽象工厂设计模式。在简单工厂中&#xff0c;我们的工厂类一次只可以处理一类产品。那么如果我们想处理多类产品&#xff0c;简单工厂是满足不了的。必须要用抽象工厂设计模式。 我们先从概念上来了解下什么是抽象工厂设计模…