我国科学家首次揭示“时空”记忆在猕猴大脑中表征的几何结构

e71fa26db4027b657d44312512b9c27b.png

来源:央视新闻客户端

作者:帅俊全 

2月11日,国际学术期刊《科学》以长文形式发表了题为《序列工作记忆在猕猴前额叶表征的几何结构》的研究论文。

近日,中国科学院脑科学与智能技术卓越创新中心与国内多家单位合作,发现神经元以群体编码的形式表征了序列中的每一个空间位置,并在这些表征中发现了类似的环状几何结构。该研究推翻了经典序列工作记忆模型的关键假设,为神经网络如何进行符号表征这一难题提供了新的见解。

人类大脑无时无刻不在处理序列信息,不论是语言沟通、动作实施还是情景记忆,本质上都涉及对时序信息的表征。另一方面,序列的执行需要一定的时间,大脑需要在应用时序信息之前记住整个序列。比如,我们需要在问路时记住指路人给出的一系列方向指引,在学习新的舞蹈动作时记住老师演示的一连串动作模式。在这些情况下,不仅单个内容需要被记住,它们之间的顺序也不能混淆。

猕猴是演化上最接近人类的模式动物,为了探究时序记忆编码问题,研究人员训练猕猴记忆由多个位置点组成的空间序列。在任务中,猕猴面前的屏幕上会依次闪现三个不同的点,猕猴需要在几秒钟之后将这些点按之前呈现的顺序汇报出来。在汇报前的几秒记忆保持期内,空间序列的信息便以工作记忆的形式被暂时储存在大脑中。为了记录大脑神经元群体在猕猴进行任务时的活动状态,研究人员对工作记忆的大本营——外侧前额叶皮层进行了双光子钙信号成像。钙信号可反映神经元的脉冲放电活动,而序列信息表征的关键就在记忆期神经元群体的活动模式之中。

大脑如何在记忆期内同时表征序列中多个信息呢?研究人员猜想猕猴的大脑中也有一块“屏幕”,猕猴可以把出现过的点记在这个屏幕上。可如果三个点同时在记忆保持期内显示在了这个屏幕上,每个点的次序又该如何体现呢?猕猴的大脑里面是否会同时存在三块不同的屏幕?这样每个屏幕只需要记下一个点的信息,而且屏幕之间不会互相干扰。

研究人员分析了钙成像获得的高维数据,发现可以在高维向量空间里面找到每个次序的信息所对应的二维子空间,即找到其对应的“屏幕”。在每个子空间内,不同的点所对应的空间位置与真实视觉刺激的环状结构保持了一致。进一步分析表明,不同次序所对应的子空间接近相互正交,说明大脑确实用到了三块不同的屏幕来表征序列信息。

为了进一步探究大脑是否总是用相同的这几块“屏幕”记忆不同类型的空间序列,研究人员对数据做了解码分析,即运用机器学习方法训练线性分类器来区分不同次序上的空间信息。比如,用猕猴正确应答时的神经元群体活动训练解码器,可以在部分做对的序列里面取得较好的解码效果。这些结果提示了用于编码次序的“屏幕”是稳定通用的。

研究人员还发现,不同次序的子空间之间共享了类似的环状结构,只是环的半径大小会随次序的增加而减小。一个可能的解释是,次序靠后的信息所分配到的注意资源更少,导致对应的环变小、区分度降低。这一结构也对应了序列记忆的行为表现,例如我们日常生活中如果记忆的内容越多,越往后的信息便更容易出错。

该发现也可总结为在群体水平的空间信息编码几何结构受时序调制的性质。有意思的是,这种性质并不完全适用于单个神经元水平,而单神经元活动的增强调制正是经典序列工作记忆模型的关键假设,提示了序列记忆的编码应更加关注群体神经元性质。

该研究第一次在群体神经元水平阐释了序列工作记忆的计算和编码原理,也为神经网络如何进行符号表征这一难题提供了新的思路。

(总台央视记者 帅俊全)

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

c6f7ea1f6351183e24f1c8594b34f78a.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智源学术顾问David Harel:经典建模与AI的联姻,如何攻破机器学习的可解释性?| 大师讲座...

来源:智源社区讲者:David Harel整理:熊宇轩编辑:李梦佳导读:设想一下,现在我们要建造一种工厂机器人,能移动物体、组装零件、抬起物体。机器学习专家自然会采用深度学习、神经网络一类的AI技术&…

重磅突发!全球首富40颗卫星遭摧毁

来源:中国基金报在上周最新发射的49颗卫星中,有40颗卫星遭地磁风暴“摧毁”——全球首富、特斯拉CEO马斯克旗下SpaceX公司的星链计划遭遇挫折。此外,美国国家航空航天局(NASA)、亚马逊均表示,对于SpaceX星链计划还要新部署约3万颗…

扩散模型就是自动编码器!DeepMind研究学者提出新观点并论证

来源:明敏 发自 凹非寺量子位 | 公众号 QbitAI由于在图像生成效果上可以与GAN媲美,扩散模型最近成为了AI界关注的焦点。谷歌、OpenAI过去一年都提出了自家的扩散模型,效果也都非常惊艳。另一边,剑桥大学的学者David Krueger提出&a…

2019已悄然过半

2019过半,不知不觉已进入秋天,今年上海夏天格外凉爽,没感觉热就结束了。上半年总体感觉归于平淡,但是平平淡淡才是真嘛。年初制定的个人计划基本完成,关键是难度系数都不高,下半年有两项重要考核正在等着&a…

关于欧盟的芯片法案,ASML是这样看的!

来源:光电汇OESHOW近日,欧盟发布了一个芯片法案,ASML随后便公开表示了他们对这个答案的看法。内容如下:塑造我们生活的智能互联世界的全球大趋势正在推动对微芯片的需求显著增长。最近的芯片短缺凸显了复杂的全球半导体生态系统中…

万字长文!DeepMind科学家总结2021年的15个高能研究

来源:新智元2021年ML和NLP依然发展迅速,DeepMind科学家最近总结了过去一年的十五项亮点研究方向,快来看看哪个方向适合做你的新坑!最近,DeepMind科学家Sebastian Ruder总结了15个过去一年里高能、有启发性的研究领域&a…

情人节特刊| 爱的神经机制

来源:浙江大学学术委员会文:周炜1在哺乳动物的物种中,仅有不到10%的物种能够形成基于一夫一妻制的配对关系。随着时间的推移,通过选择性地寻找伴侣和与伴侣互动,夫妻关系得以维持和加强。大多数实验室啮齿动物包括大小…

为了自动驾驶,谷歌用NeRF在虚拟世界中重建了旧金山市

来源:机器学习研究组订阅真不用来做成元宇宙?训练自动驾驶系统需要高精地图,海量的数据和虚拟环境,每家致力于此方向的科技公司都有自己的方法,Waymo 有自己的自动驾驶出租车队,英伟达创建了用于大规模训练…

人工智能可以自己编码?2022年这8个人工智能趋势值得关注!

来源:产业大视野译者:Sambodhi1. AI-on-5G2022 年,工业 AI 和 AI-on-5G 物联网应用将会成为主流。想象一下,当我我以元宇宙为目标的时候,我们对物理空间的升级方式同样令人印象深刻。AI-on-5G 组合计算基础设施为传感器…

通过OracleDataReader来读取BLOB类型的数据

在实际的应用过程中,需要把大块的二进制数据存储在数据库中。读取这些大块的数据,可以通过强制类型转换成为byte数组,但是当这个二进制数据体够大时(几十兆或者上百兆),一次并不能获取到他的完整长度&#…

完美的优化目标,人工智能的盲点

来源:AI科技评论译者:辛西娅编辑:维克多人工智能(AI)系统的脆弱性一直被行业人员所诟病,稍微的数据错误就会使系统发生故障。例如在图像识别中,图片微小的像素改变,不会干扰人类视觉…

宇宙和世界真的是虚拟的吗?

来源:数学中国 2021年元宇宙无疑成为科技领域最火爆的概念之一,扎克伯格曾表示未来脸书将从一家社交媒体公司转变为一家元宇宙公司,之后元宇宙这个词席卷了整个互联网与投资圈。在大多数人还搞不懂元宇宙是什么的时候,科技公司们已…

粒子物理学有了新的基础数学理论

来源:科技日报科技日报柏林2月13日电 (记者李山)近日,来自奥地利和英国的科学家共同发表了一个粒子物理学的基础数学新理论。他们定义和研究了黎曼曲面上存在的非常稳定的希格斯丛,其蕴涵了全局幂零锥稳定分量的多重性…

2022年重大颠覆性科技创新趋势报告(完整版)

来源:点滴科技资讯未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业…

02.Mybatis的动态代理方式实现增删改查

动态代理的方式实现增删改查: 通过约定的方式定位sql语句 约定 > 配置文件 > 硬编码 约定的目标是省略掉通过硬编码的方式定位sql的代码,通过接口直接定位出sql语句,以下代码为通过硬编码的方法定位sql: 1      //读取conf.xml 配置文件2 Reader…

孙正义看未来30年:这个趋势,永远不会错(附完整PPT)

来源:大数据实验室 对于今后30年来讲,我认为现在是个很关键的时刻,尤其是在各位的人生当中。而且现在是一整个概念的转变,我们要包容这个概念的转变。我想先给大家看两张照片。这是美国纽约的第五大道,左边那张是1900年…

可视化解释11种基本神经网络架构

来源:海豚数据科学实验室标准,循环,卷积和自动编码器网络随着深度学习的飞速发展,已经创建了完整的神经网络体系结构主机,以解决各种各样的任务和问题。尽管有无数的神经网络架构,但对于任何深度学习工程师…

设计模式之二抽象工厂设计模式

继上篇简单工厂设计模式之后,今天继续讲解抽象工厂设计模式。在简单工厂中,我们的工厂类一次只可以处理一类产品。那么如果我们想处理多类产品,简单工厂是满足不了的。必须要用抽象工厂设计模式。 我们先从概念上来了解下什么是抽象工厂设计模…

Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...

来源:凹非寺作者:晓查 明敏你知道吗?在地球上,楼层越低,时间过得越慢。这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。△ 在不同高度差上验证时钟变快…

DARPA可解释AI研究(XAI计划)的4年回顾与经验总结

来源:智源社区作者:David Gunning, Eric Vorm, Jennifer Yunyan Wang, Matt Turek编译:牛梦琳摘要:从项目管理人员和评估人员的角度,对国防高级研究计划局(DARPA)的可解释人工智能(X…